Stroke Risk and Mortality in Patients With Ventricular Assist Devices

Neal S. Parikh, MD*; Joséphine Cool, MD*; Maria G. Karas, MD; Amelia K. Boehme, PhD; Hooman Kamel, MD

Background and Purpose—Ventricular assist devices (VADs) have advanced the management of end-stage heart failure. However, these devices are associated with hemorrhagic and thrombotic complications, including stroke. We assessed the incidence, risk factors, and outcomes of ischemic and hemorrhagic stroke after VAD placement.

Methods—Using administrative claims data from acute care hospitals in California, Florida, and New York from 2005 to 2013, we identified patients who underwent VAD placement, defined by the International Classification of Diseases, Ninth Revision, Clinical Modification code 37.66. Ischemic and hemorrhagic strokes were identified by previously validated coding algorithms. We used survival statistics to determine the incidence rates and Cox proportional hazard analyses to examine the associations.

Results—Among 1813 patients, we identified 201 ischemic strokes and 116 hemorrhagic strokes during 3.4 (±2.0) years of follow-up after implantation of a VAD. The incidence of stroke was 8.7% per year (95% confidence interval [CI], 7.7–9.7). The annual incidence of ischemic stroke (5.5%; 95% CI, 4.8–6.4) was nearly double that of hemorrhagic stroke (3.1%; 95% CI, 2.6–3.8). Women faced a higher hazard of stroke than men (hazard ratio, 1.6; 95% CI, 1.2–2.1), particularly hemorrhagic stroke (hazard ratio, 2.2; 95% CI, 1.4–3.4). Stroke was strongly associated with subsequent in-hospital mortality (hazard ratio, 6.1; 95% CI, 4.6–7.9).

Conclusions—The incidence of stroke after VAD implantation was 8.7% per year, and incident stroke was strongly associated with subsequent in-hospital mortality. Notably, ischemic stroke occurred at nearly twice the rate of hemorrhagic stroke. Women seemed to face a higher risk for hemorrhagic stroke than men. (Stroke. 2016;47:2702-2706. DOI: 10.1161/STROKEAHA.116.014049.)

Key Words: heart failure ■ heart-assist devices ■ intracranial hemorrhage ■ risk factors ■ stroke

See related article, p 2677.

Ventricular assist devices (VADs) play an important role in the management of advanced heart failure. VAD therapy is intended for patients with severe heart failure that causes disabling symptoms such as dyspnea at rest or with minimal activity or such heart failure that requires inotrope therapy.2,3 VADs provide mechanical circulatory support to patients primarily as a bridge to heart transplantation.2 More recently, an increasing proportion of VADs are being implanted as destination therapy, particularly in older patients with multiple comorbidities who are not candidates for heart transplantation.2,4

VADs are associated with several thrombotic and hemorrhagic complications, such as pump thrombosis, systemic bleeding, thromboembolic stroke, and intracranial hemorrhage.2,25 It is customary to maintain VAD patients on therapeutic anticoagulation with warfarin and an antiplatelet agent, typically aspirin.1,6,7 Estimates of stroke risk in patients with VADs vary widely,8-11 but registry data show a cumulative overall stroke rate of 19% by 3 years.4 Risk factors and the characteristics and outcomes of stroke in patients with VADs have not been well defined. Therefore, we used comprehensive administrative claims data from 3 states to assess the relationship between VADs and stroke.

Methods

Design
We used administrative claims data on all admissions to nonfederal acute care hospitals in California, Florida, and New York. These heterogeneous states comprise ∼25% of the total US population and were chosen because they are the 3 largest states with publicly available deidentified data that allow tracking of individual patients from visit to visit across years. Data were available for 2005 to 2011 in California, 2005 to 2013 in Florida, and 2006 to 2013 in New York. The Agency for Healthcare Research and Quality12 collects these data from the California Office of Statewide Health Planning and Development, the New York State Department of Health Statewide Planning and Research Cooperative System, and the Florida Agency for Health Care Administration, and subsequently deidentifies the data by assigning each patient an anonymous record number. The Weill Cornell Medicine Institutional Review Board approved our analyses.
Patient Population
We identified all patients who underwent VAD placement, defined as International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) code 37.66 (insertion of implantable heart assist system). The vast majority (95%) of VADs placed in the United States are durable continuous flow left ventricular assist devices (LVADs), and this code has been used to study the epidemiology of these devices. Patients were included regardless of whether they underwent VAD placement as destination therapy or as a bridge to transplantation. We excluded patients with a documented stroke before the index visit for VAD placement. Nonresidents of California, Florida, and New York were excluded to maximize follow-up.

Measurements
Stroke was defined as a composite of ischemic or hemorrhagic stroke, as identified by previously validated ICD-9-CM discharge diagnosis code algorithms. Ischemic stroke was defined by ICD-9-CM codes 433.x1, 434.x1, or 436 in any discharge diagnosis position in the absence of any concomitant code for trauma or intracranial hemorrhage or a primary code for rehabilitation. This algorithm was found to be 86% sensitive and 95% specific for ischemic stroke. Hemorrhagic stroke was defined as any diagnosis code for intracerebral hemorrhage (ICH) (ICD-9-CM code 431) or subarachnoid hemorrhage (430) in the absence of any concomitant code for trauma or a primary code for rehabilitation. This has been shown to be 82% sensitive and 93% specific for ICH and 98% sensitive and 92% specific for subarachnoid hemorrhage. Additionally, we included nontraumatic subdural hematoma (in the absence of any trauma codes or a primary code for rehabilitation). This has been shown to be 82% sensitive and 93% specific for ICH and 98% sensitive and 92% specific for subarachnoid hemorrhage. Additionally, we included nontraumatic subdural hematoma in our definition of hemorrhagic stroke given the evidence that nontraumatic subdural hematomas comprise a substantial proportion of intracranial hemorrhages. The ICD-9-CM code for subdural hematoma (432.1) has been validated to be 96% sensitive and 89% specific.

Additional covariates were demographic characteristics such as age, sex, race, insurance status, and household income; vascular risk factors such as hypertension, diabetes mellitus, coronary heart disease, peripheral vascular disease, chronic obstructive pulmonary disease, chronic kidney disease, and atrial fibrillation; and the overall burden of medical illness as measured by the Elixhauser comorbidity index.

Statistical Analysis
Baseline characteristics were reported with standard descriptive statistics and compared using the χ² test or t test, as appropriate. Survival statistics were used to calculate incidence rates, and Kaplan–Meier analysis was used to calculate cumulative rates. Patients were censored at the time of in-hospital death, or date of the last available follow-up data. For secondary analyses of ischemic stroke and hemorrhagic stroke patients, patients were censored at the time of their first recorded stroke, whether ischemic or hemorrhagic. After confirming that the proportional hazard assumption was met, Cox proportional hazards modeling was used to identify factors associated with stroke. Additionally, we used separate Cox models to assess the association between stroke and subarachnoid hemorrhage or a primary code for rehabilitation in our definition of hemorrhagic stroke given the evidence that nontraumatic subdural hematomas comprise a substantial proportion of intracranial hemorrhages. The ICD-9-CM code for subdural hematoma has been validated to be 96% sensitive and 89% specific.

Results
We identified 1813 patients with the implantation of a VAD. The mean age of the patients was 56.1 (±13.1) years, and patients were predominantly men (79.8%). They had a high proportion of baseline vascular risk factors, including coronary artery disease, hypertension, diabetes mellitus, and atrial fibrillation. Patients who experienced a stroke after VAD implantation were younger and more likely to be women (Table).

Over 3.4 (±2.0) years of follow-up, we identified 301 patients with a stroke (16.6%). Of these, 201 patients had ischemic stroke, 116 had hemorrhagic stroke, and 16 had both. The overall incidence of any stroke was 8.7% (95% confidence interval [CI], 7.7–9.7) per year. The annual incidence was 5.5% (95% CI, 4.8–6.4) for ischemic stroke, and 3.1% (95% CI, 2.6–3.8) for hemorrhagic stroke. By 3 years after VAD placement, this resulted in a cumulative overall stroke rate of 22.2% (95% CI, 19.9–24.7; Figure 1), a cumulative ischemic stroke rate of 14.9% (95% CI, 13.0–17.2%; Table).
Figure 1. Cumulative rate of stroke after ventricular assist device placement.

Figure 2), and a cumulative hemorrhagic stroke rate of 8.6% (95% CI, 7.1–10.4%; Figure 3).

In multivariable analysis adjusting for demographics, vascular risk factors, and comorbidities, female sex was independently associated with stroke (hazard ratio [HR], 1.6; 95% CI, 1.2–2.1). This association was not present for ischemic stroke (HR, 1.3; 95% CI, 0.9–1.9) but was particularly pronounced for hemorrhagic stroke (HR, 2.2; 95% CI, 1.4–3.4).

In the overall sample, the cumulative hemorrhagic stroke rate in women (14.0%; 95% CI, 10.0%–19.4) was substantially greater than in men (8.8%; 95% CI, 6.9–11.3%; P<0.001). The higher risk of hemorrhagic stroke in women compared with men was neither changed when the time period of VAD placement (2005–2008 versus 2009–2013) was included as a covariate nor was the period of VAD placement itself independently associated with hemorrhagic stroke (HR, 0.9; 95% CI, 0.6–1.4). However, the relative hazard of hemorrhagic stroke in women compared with men was greater in 2005 to 2008 (HR, 1.9; 95% CI, 1.0–3.5) than in 2009 to 2013 (HR, 1.8; 95% CI, 0.9–3.4; P=0.02 for interaction), indicating that the degree of disparity between men and women in hemorrhagic stroke risk after VAD placement has declined significantly over time.

After discharge from index hospitalization for VAD placement, 16.3% (95% CI, 14.6–18.0) of patients faced in-hospital death. After adjusting for demographics, vascular risk factors, and comorbidities, stroke was strongly associated with subsequent in-hospital mortality (HR, 6.1; 95% CI, 4.6–7.9). The association between stroke and in-hospital mortality was similar irrespective of whether the stroke was ischemic (HR, 8.5; 95% CI, 5.9–12.2) or hemorrhagic (HR, 6.7; 95% CI, 4.7–9.5).

Discussion
In a large, population-based sample of patients, ≈1 in every 10 patients experienced a stroke each year after VAD implantation. This is comparable to the contemporary incidence of gastrointestinal hemorrhage of ≈10% per year and of pump thrombosis of 9% at 12 months in 2013. The stroke rate in our cohort significantly exceeded the highest observed rates in multiple historical cohorts of medically managed mild-to-moderate heart failure and in a recent analysis of patients with dramatically reduced ejection fraction (<15%), which supports the conclusion that the association is with the VAD implant itself, not just with the patient population requiring the implant. Additionally, we found that ischemic stroke was nearly twice as common as hemorrhagic stroke, despite it being customary for VAD patients to be treated with warfarin and an antiplatelet agent. Although VAD recipients were predominantly men, women had an increased risk of stroke, especially hemorrhagic stroke. Stroke was strongly associated with subsequent in-hospital mortality.

Our findings are generally consistent with and build upon the existing VAD registry results, which have not reported granular data on stroke subtypes (eg, ischemic versus hemorrhagic). The 22.2% 3-year cumulative stroke rate in our cohort is consistent with the 19% cumulative stroke rate in registry data. Our finding of an 8.7% annual incidence of stroke is also similar to the findings of a recent single-center analysis of stroke in LVAD recipients, which found a 0.094 events per patient-year rate of stroke. However, this study found an ≈3:1 ratio of ischemic stroke to ICH, in contrast to the 2:1 ratio seen in our results. This may be because of the small sample size of their study and their exclusion of subdural hematoma from the definition of ICH. Additionally, their study found a higher rate of in-hospital mortality after ICH than after ischemic stroke; however, their ICH sample size was small (n=8), and they did not assess the effect of stroke on mortality in this population. Our study found that the risk of in-hospital mortality after stroke did not vary with stroke subtype, which is consistent with a recent single-center study of outcome after stroke in the LVAD population. However, in contrast to the 2-fold risk of mortality after stroke seen in their cohort, we found a 6-fold risk of in-hospital mortality. The discrepancy may be because we considered only in-hospital mortality, the rate of which may be greater in stroke patients. Our finding of an elevated risk of in-hospital mortality after stroke in VAD patients is also consistent with the findings of registry data and a large study demonstrating reduced survival in patients with LVAD-related thromboembolic events. Our data reveal a strong association between stroke and in-hospital mortality and also suggest an association with mortality overall. Generally, other studies of stroke in patients with LVADs...
have died in a hospital, so though our findings may overestimate the strength of the association between stroke and mortality, we do not expect this bias to fully attenuate the observed relationship. Additionally, the specific finding of increased risk of in-hospital death after stroke is germane to increasingly important end-of-life considerations in this population.

Fourth, the ICD-9-CM code used to identify patients with VADs is all-inclusive, capturing primarily not only left ventricular devices of various models and types but also a small number of other type of VADs.

Future Directions
Given the growing public health burden of advanced heart failure and the tremendous resources invested in the care of these patients, understanding and preventing complications is crucial. Future investigations of modifiable stroke risk factors, sex-specific stroke risk factors, and optimal antithrombotic regimens for these patients are warranted.

Conclusions
Our population-level analysis demonstrates that patients, especially women, with VADs are at high risk for stroke, and stroke is associated with an increased risk of in-hospital mortality in VAD recipients.

Sources of Funding
This study was supported by grant K23NS082367 (Dr Hooman Kamel) from the National Institute of Neurological Disorders and Stroke.

Disclosures
None.

References

12. Essig S, Steiner C, Kuehni CE, Weber H, Kiss A. Improving communica-

25. van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ. Incidence, case fatality, and functional outcome of intracerebral haemor-

30. Morgan JA, Weinberg AD, Hollingsworth KW, Flannery MR, Oz MC, Naka Y. Effect of gender on bridging to transplantation and posttrans-

31. Boyle AJ, Russell SD, Teuteberg JJ, Slaughter MS, Moazami N, Pagani FD, et al. Low thromboembolism and pump thrombosis with the HeartMate II left ventricular assist device: analysis of outpatient anticoagu-

Stroke Risk and Mortality in Patients With Ventricular Assist Devices
Neal S. Parikh, Joséphine Cool, Maria G. Karas, Amelia K. Boehme and Hooman Kamel

Stroke. 2016;47:2702-2706; originally published online September 20, 2016; doi: 10.1161/STROKEAHA.116.014049
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/47/11/2702