Conclusions

Significant stroke in ACAO is relatively infrequent, but patients face high mortality rates. This suggests the need for intensified medical therapy in ACAO. (Stroke. 2016;47:1253-1257. DOI: 10.1161/STROKEAHA.116.012760.)

Key Words: carotid artery diseases ■ ischemic attack, transient ■ prognosis ■ publication bias ■ risk

Carotid artery occlusion accounts for 10% to 15% of all strokes and transient ischemic attacks (TIAs). Most cases of occlusion are because of atherosclerosis, with a smaller fraction comprising dissection, embolism, radiation vasculopathy, granulomatous disease, and moyamoya. The most common site for occlusion is at the origin of the internal carotid artery in the neck.

Asymptomatic carotid artery occlusion (ACAO) is most frequently discovered as an incidental finding during radiological workup for cerebrovascular disease or after auscultation of a neck bruit. Improvements in ultrasound technology and wide-scale diffusion of carotid ultrasound have led to a larger number of patients being diagnosed with ACAO. Data conflict as to the long-term prognosis of ACAO, with some studies suggesting high rates of events and other studies finding low rates. This was the impetus for the current systematic review, which synthesizes adverse outcomes across all available studies, with a particular focus on the risk of ipsilateral ischemic stroke.

Methods

This review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines (Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines checklist is given in Appendix I in the online-only Data Supplement).7

Study Eligibility

Studies were selected if they (1) enrolled patients with ACAO, even if only as a discrete subgroup; (2) collected follow-up information on the occurrence of ipsilateral ischemic stroke among patients with ACAO; and (3) were published in the English language. Studies enrolling patients who underwent carotid revascularization were excluded as revascularization may alter the natural history of carotid occlusion. There were no restrictions by sample size, duration of follow-up, the number of events, or publication status.

Search Strategy

A 2-pronged search strategy was used for this review. First, OVID MEDLINE (from 1946) and EMBASE (from 1947) were searched using relevant keywords (ie, carotid, occlu*, and asymptomatic). The specific databases searched included MEDLINE, OLDMEDLINE, MEDLINE In-Process & Other Non-indexed Citations, MEDLINE Daily, EMBASE Classic, and EMBASE. A validated prognosis filter was used to narrow the search to prognostic studies (Appendix II in the online-only Data Supplement). The search was deduplicated to remove identical citations found in multiple databases. All resulting search hits were then screened for relevance by viewing titles, abstracts, and keywords. Potentially relevant articles were retrieved as full text. Second, the internal reference lists of relevant studies were perused to obtain additional search hits for review. In iterative fashion, the reference lists of the additional search hits were also reviewed (snowballing). The search was kept updated using email autoalerts from the OVID interface. Articles were graded for inclusion based on the aforementioned study eligibility criteria.
Data Extraction

Descriptive variables were extracted from each eligible study, including citation information (authors and publication year), baseline patient characteristics (total sample size and the number of patients with ACAO, inclusion and exclusion criteria, accrual interval, mean age, and sex distribution), study design (prospective versus retrospective, defined according to the study investigators), diagnostic imaging information (diagnostic technique and proportion undergoing angiography), follow-up information (mean and maximum follow-up), and events. The latter included ipsilateral ischemic stroke, ipsilateral TIA, total stroke, total TIA, death, stroke-related death, and cardiac death (defined as death caused by coronary artery disease or heart failure).

In all cases where Kaplan–Meier event rates were available, these were used preferentially. However, in the absence of actuarial event rates, all studies contained sufficient information for calculating the absolute annual event rate for ipsilateral stroke and other end points. All data were extracted onto an electronic spreadsheet.

Methodological quality of studies was rated using the Newcastle Ottawa scale; originally, a 9-point scale used for assessing observational studies.10 The scale was adapted to this data set by removing 2 questions focused on cohort studies with therapies. The resulting scale was scored out of a maximum of six points.

Data Analysis

The primary meta-analytic outcome was ipsilateral ischemic stroke. This was expressed as an annual rate. Studies were combined using a random effects model, given widely varying event rates for ACAO. This was expressed as an annual rate. Studies were combined using an unrestricted maximum likelihood approach, given widely varying event rates for ACAO. Heterogeneity was measured using the I^2 statistic.11 As a rule of thumb, I^2 values of 25%, 50%, and 75% represent low, moderate, and high heterogeneity, respectively. Also synthesized were total stroke, total TIA, total TIA, death, stroke-related death, and cardiac death.

Prespecified meta-regression analyses were planned should I^2 exceed 50% for the primary outcome. Using a univariate mixed effects regression and an unrestricted maximum likelihood approach, the following independent variables were tested for their effects on ipsilateral stroke rate: sample size, publication year, study design (prospective versus retrospective), mean age, sex female, (%), mean length of follow-up, and Newcastle Ottawa scale. Because medical therapy for atherosclerosis has improved over time, a subgroup analysis compared ipsilateral stroke rates in studies published before 2000 versus those published on or after 2000.

Table 1. Study Characteristics

<table>
<thead>
<tr>
<th>Study</th>
<th>n (Total)</th>
<th>n (ACAO)</th>
<th>Study Design</th>
<th>Mean f/u, y</th>
<th>Maximum f/u, y</th>
<th>Mean Age</th>
<th>Female, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bornstein and Norris4</td>
<td>40</td>
<td>19</td>
<td>Prospective cohort</td>
<td>4.0</td>
<td>7.0</td>
<td>69</td>
<td>21</td>
</tr>
<tr>
<td>Countee and Vijayanathan13</td>
<td>22</td>
<td>10</td>
<td>Retrospective cohort</td>
<td>1.9</td>
<td>3.3</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>Hennrici et al6</td>
<td>49</td>
<td>49</td>
<td>Prospective cohort</td>
<td>2.6</td>
<td>7.0</td>
<td>62</td>
<td>22</td>
</tr>
<tr>
<td>Kimiagar et al4</td>
<td>35</td>
<td>35</td>
<td>Prospective cohort</td>
<td>3.5</td>
<td>4.0</td>
<td>66</td>
<td>40</td>
</tr>
<tr>
<td>Markus and Cullinane15</td>
<td>107</td>
<td>48</td>
<td>Prospective cohort</td>
<td>1.7</td>
<td>4.0</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Nicholls et al16</td>
<td>24</td>
<td>13</td>
<td>Prospective cohort</td>
<td>3.3</td>
<td>8.0</td>
<td>67</td>
<td>25</td>
</tr>
<tr>
<td>Nonino et al17</td>
<td>26</td>
<td>26</td>
<td>Retrospective cohort</td>
<td>2.9</td>
<td>7.8</td>
<td>70</td>
<td>19</td>
</tr>
<tr>
<td>Powers et al18</td>
<td>111</td>
<td>30</td>
<td>Prospective cohort</td>
<td>2.8</td>
<td>NR</td>
<td>64</td>
<td>23</td>
</tr>
<tr>
<td>Rautenberg et al18</td>
<td>101</td>
<td>94</td>
<td>Prospective cohort</td>
<td>3.7</td>
<td>NR</td>
<td>62</td>
<td>19</td>
</tr>
<tr>
<td>Verlato et al19</td>
<td>41</td>
<td>22</td>
<td>Prospective cohort</td>
<td>4.0</td>
<td>5.4</td>
<td>65</td>
<td>20</td>
</tr>
<tr>
<td>Vernieri et al20</td>
<td>65</td>
<td>23</td>
<td>Prospective cohort</td>
<td>2.0</td>
<td>5.1</td>
<td>64</td>
<td>23</td>
</tr>
<tr>
<td>Vernieri et al21</td>
<td>104</td>
<td>33</td>
<td>Prospective cohort</td>
<td>2.0</td>
<td>5.0</td>
<td>69</td>
<td>26</td>
</tr>
<tr>
<td>Yang et al22</td>
<td>3681</td>
<td>316</td>
<td>Retrospective cohort</td>
<td>2.6</td>
<td>20.2</td>
<td>66</td>
<td>29</td>
</tr>
</tbody>
</table>

ACAO indicates asymptomatic carotid artery occlusion; f/u, follow-up; and NR, not reported.

Publication bias was tested with a Duval and Tweedie trim-and-fill test.12 This analysis imputes potentially missing studies to the left or right of the mean and tests for change in the outcome variable.

Results

From a total of 1240 citations, 1002 were found to be unique; these were then screened by reviewing titles, abstracts, and keywords (Figure I in the online-only Data Supplement). After eliminating irrelevant reports, 73 studies were assessed in full-text format. The most common reason for exclusion among these studies was that no asymptomatic patients were included. As a result of review, 13 studies were included in the meta-analysis (Table 1; Table I in the online-only Data Supplement).4–6,13–22

In aggregate, the studies enrolled 4406 patients; of whom, 718 had ACAO (16%). The median age of patients with ACAO was 67, and 23% were women. Most studies were prospective (n=10), and the median Newcastle Ottawa scale score was 5 (range 4–6; Table 2). All but 2 studies used ultrasound to define ACAO diagnostically. However, use of angiography was also high overall (66% of subjects).

Median follow-up was 2.80 years with a total of 1982 person-years of observation time. The annual ipsilateral stroke rate was 1.3% (95% CI, 0.4–2.1%; Table 3). Two- and 5-year rates of stroke were 2.5% and 6.3%, respectively. There was substantial heterogeneity in the base estimate (I^2=53%). Annual total stroke rate was 2.0% (95% CI, 0.9–3.0%; F=40%).

Eleven studies reported on ipsilateral TIA. The annual rate of ipsilateral TIA was 1.0% (95% CI, 0.3–1.8%; F=40%). Annual total TIA was 3.0% (95% CI, 1.9–4.1; F=0). Seven studies reported mortality; the annual rate of death was 7.7% (95% CI, 4.3–11.2). Heterogeneity was pronounced (F=83%). Six studies reported on stroke-related death, with an annual rate of 1.1% (95% CI, 0.07–2.1; F=63%). Cardiac death was more frequent: 3.3% per year (95% CI, 1.2–5.4; F=83%). Heterogeneity estimates were substantial for most measures with the exception of TIA and total stroke.
Meta-regression analyses revealed that ipsilateral stroke was inversely related to sample size (β coefficient, -0.00005; $P<0.001$), publication year (-0.00059; $P<0.001$), and female sex (-0.10, $P=0.013$) but positively related to prospective study design (0.01442; $P<0.001$). There was no relationship with sample age, methodological quality, or duration of follow-up. In the prespecified subgroup analysis, studies published on or after the year 2000 had a lower aggregate ipsilateral stroke rate (0.9% per year) than studies published before 2000 (1.5% per year); this difference was statistically significant ($P=0.003$).

The funnel plot was asymmetrical (Figure) with evidence for missing studies to the left of the mean. Duval and Tweedie trim-and-fill analysis suggested a revised ipsilateral stroke rate of 0.3% per year (95% CI, -0.4 to 1.1) based on correction for publication bias. Details of study follow-up are provided in Table 4.

Discussion

The main finding of this review is that the risk of stroke from ACAO is low: 1.3% per year or 0.3% per year in the publication-bias adjusted analysis. Therefore, procedures to repair most cases of ACAO are not warranted because the potential benefits are low, and most procedures carry inherent risk for stroke and other adverse outcomes.

That does not mean that ACAO is a low-risk condition. The annual risk of death is high (7.7%); about half of which is caused by cardiac causes. Patients with ACAO often have atherosclerosis in other critical locations, such as the coronary and peripheral arteries. Affected patients have a high burden of vascular risk factors that merit treatment to reduce their risk of systemic atherothrombosis. These risk factors include smoking, hypertension, diabetes mellitus, and dyslipidemia.

The main limitation of this review is that for many end points—including ipsilateral stroke—heterogeneity was present. This was because of several factors, including publication year, which is a proxy for accrual era. Older studies had higher rates of ipsilateral stroke than more recent studies, probably because of less treatment in previous studies with contemporary agents, such as statins and angiotensin-converting enzyme inhibitors. If true, this suggests that the rate of stroke from ACAO in the modern era (0.9%) is even lower than the grand mean suggests. In addition, there is a strong suggestion that missing studies exist to the left of the mean, which if combined with the data set would further lower the mean rate.

Table 2. Methodological Quality of Cohort Studies According to the Newcastle Ottawa Scale

<table>
<thead>
<tr>
<th>Study</th>
<th>Representativeness of Exposed Cohort (1 Point)</th>
<th>Ascertainment of Exposure (1 Point)</th>
<th>Demonstration That Outcome of Interest Was Not Present at Baseline (1 Point)</th>
<th>Assessment of Outcome of Interest (1 Point)</th>
<th>Follow-Up Long Enough for Outcomes to Occur (1 Point)</th>
<th>Adequacy of Follow-Up of Cohorts (1 Point)</th>
<th>Total Score (6 Points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bornstein and Norris</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Countee and Vijayanathan</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Henmerici et al</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Kiniari et al</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Markus and Cullinane</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Nicholls et al</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Nonino et al</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Powers et al</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Rautenberg et al</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Verlato et al</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Vernieri et al, 1999</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Vernieri et al, 2001</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Yang et al</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

CI indicates confidence interval; and TIA, transient ischemic attack.

Table 3. Meta-Analysis of Event Rates

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Studies, n</th>
<th>Events, n</th>
<th>Annual Event Rate, % (95% CI)</th>
<th>Heterogeneity, I^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ipsilateral stroke</td>
<td>13</td>
<td>29</td>
<td>1.3 (0.4–2.1)</td>
<td>53</td>
</tr>
<tr>
<td>Total stroke</td>
<td>12</td>
<td>39</td>
<td>2.0 (0.9–3.0)</td>
<td>40</td>
</tr>
<tr>
<td>Ipsilateral TIA</td>
<td>11</td>
<td>19</td>
<td>1.0 (0.3–1.8)</td>
<td>40</td>
</tr>
<tr>
<td>Total TIA</td>
<td>9</td>
<td>32</td>
<td>3.0 (1.9–4.1)</td>
<td>0</td>
</tr>
<tr>
<td>Death (all cause)</td>
<td>7</td>
<td>151</td>
<td>7.7 (4.3–11.2)</td>
<td>83</td>
</tr>
<tr>
<td>Death (stroke related)</td>
<td>6</td>
<td>17</td>
<td>1.1 (0.07–2.1)</td>
<td>63</td>
</tr>
<tr>
<td>Death (cardiac)</td>
<td>6</td>
<td>62</td>
<td>3.3 (1.2–5.4)</td>
<td>83</td>
</tr>
</tbody>
</table>

CI indicates confidence interval; and TIA, transient ischemic attack.
On the other hand, total rates for stroke and TIA were higher than ipsilateral rates, which again suggests that ACAO serves as a surrogate marker for vascular disease in other beds. Carotid occlusion may also carry risk for progressive cognitive decline. Patients with this condition warrant intensive, lifelong management of vascular risk factors to reduce systemic risk. The pathophysiology of stroke in ACAO is uncertain and may involve hemodynamic compromise, atheroembolism, or impaired washout. A secondary analysis of the Stroke Prevention by Aggressive Reduction in Cholesterol Levels trial suggested substantial benefit for atorvastatin among patients with carotid stenosis (however, occlusion was not defined in these results).23 Of note, later carotid revascularization was reduced by 56% (hazard ratio, 0.44; 95% CI, 0.24–0.79; \(P = 0.006 \)) in the group randomized to atorvastatin. There have been no trials of antiplatelet therapy specifically in patients with carotid occlusion, and thus, results might be extrapolated from patients with carotid stenosis. In the Perindopril Protection Against Recurrent Stroke Study (PROGRESS), active blood pressure–lowering treatment reduced the risk of large-artery ischemic stroke by 39% (95% CI, 5–61); 7% of the study population had carotid disease at baseline (defined as previous carotid intervention or carotid stenosis, \(> 50\% \)).24

Another limitation was the use of ultrasound in all but 2 studies to define carotid occlusion. Overall, the rate of angiography was 66%. The use of ultrasound may carry high sensitivity but poor specificity for the diagnosis of carotid occlusion and may also contribute heterogeneity for outcomes. However, studies typically used standardized definitions and referred to reference standards. Another limitation is a lack of uniform data on hemodynamic impairment, which may identify a subgroup at greater risk of stroke.25 Of note, only 23% of study participants were women, suggesting a significant selection bias that complicates application of the results to women. Furthermore, some studies were small (median sample size, 30), which may lead to imprecise estimates with broader 95% CIs.

Sources of Funding

This work was supported by a research grant from the Program of Experimental Medicine, Department of Medicine, Western University, London, Ontario, Canada.
Disclosures

None.

References

Prognosis of Asymptomatic Carotid Artery Occlusion: Systematic Review and Meta-Analysis
Daniel G. Hackam

Stroke. 2016;47:1253-1257; originally published online April 12, 2016;
doi: 10.1161/STROKEAHA.116.012760
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/47/5/1253

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2016/12/20/STROKEAHA.116.012760.DC1
http://stroke.ahajournals.org/content/suppl/2017/07/10/STROKEAHA.116.012760.DC2
http://stroke.ahajournals.org/content/suppl/2017/07/10/STROKEAHA.116.012760.DC3

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/
Прогноз при бессимптомной окклюзии сонной артерией. Систематический обзор и мета-анализ

Предпосылки и цель исследования. Цель настоящего систематического обзора заключалась в количественной оценке риска развития инсультов у пациентов с бессимптомной окклюзий сонной артерии (БОСА). Методы. Исследования, в которых проводили оценку риска развития инсультов при БОСА, выявили путем поиска в базах данных MEDLINE, EMBASE и библиографических списках исследований. Показатели отдельных исследований обобщили с использованием моделей пространственных эффектов, в гетерогенность количественно оценили с помощью статистики I². Первичной конечной точкой была частота развития инсультов за год. Результаты. Выявили 13 исследований с участием в общей сложности 718 пациентов с БОСА, с медианой продолжительности периода наблюдения 2,8 года. Ежегодная частота развития инсультов составила 1,3% (95% доверительный интервал – ДИ от 0,4 до 2,1; I²=53%). Ежегодная частота развития инсультов у пациентов с БОСА, с медианой продолжительности периода наблюдения 2,8 года. Ежегодная частота развития инсультов составила 1,3% (95% ДИ от 0,4 до 2,1; I²=53%). Ежегодная частота развития инсультов составила 1,3% (95% ДИ от 0,4 до 2,1; I²=53%). После внесения поправки на возможное наличие систематической ошибки публикации в отношении первичной конечной точки получили более низкие показатели риска развития инсультов (0,3% в год; 95% ДИ от -0,4 до 1,1). Выводы. Инсульт при БОСА развивается редко, однако показатели летальности среди пациентов достаточно высоки. Это наводит на мысль о необходимости интенсификации медикаментозной терапии при БОСА.

Ключевые слова: поражение сонной артерии (carotid artery diseases), транзиторная ишемическая атака (ischemic attack, transient), прогноз (prognosis), предвзятость в публикациях (publication bias), риск (risk)

На долю окклюзии сонной артерии приходится от 10 до 15% всех инсультов и транзиторных ишемических атак (ТИА) [1]. Большинство случаев окклюзии обусловлено атеросклерозом, кроме того, причинной окклюзии могут быть диссекция артерии, эмболия, радиационная васкулопатия, гранулематозное воспалительное заболевание и васкулопатия мойя-мойя [2]. Наиболее распространенной локализацией окклюзии является место ветвления внутренней сонной артерии в области шеи. Бессимптомная окклюзия сонной артерии (БОСА) зачастую является случайной находкой во время радиологического обследования по поводу цереброваскулярного заболевания или после выслушивания шума над сосудами [3]. Достижения в области ультразвуковой диагностики и широкое распространение каротидной ультрасонографии привели к тому, что БОСА диагностируют у большого числа пациентов. Данные относительно долгосрочного прогноза при БОСА противоречивы, поскольку в некоторых исследованиях получили высокие показатели частоты развития осложнений, а в других исследованиях продемонстрировали низкую частоту развития сосудистых событий [4–6]. Это побудило к проведению систематического обзора, в котором обобщили бы данные о частоте развития неблагоприятных исходов во всех имеющихся исследованиях с особым акцентом на риск развития инсультов у пациентов с БОСА.

МЕТОДЫ

Настоящий обзор проведен в соответствии со стандартами Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines (контрольный список Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines представлен в Приложении I в дополнительных данных on-line) [7].

Критерии отбора исследований

Использовали следующие критерии отбора исследований: (1) зачисление пациентов с БОСА, даже только в качестве дискретной подгруппы; (2) сбор данных о результатах повторного обследования относительно развития инсультов у пациентов с БОСА; (3) публикация результатов исследования на английском языке. Исключили исследования, в которые зачисляли пациентов, перенесших каротидную реваскуляризацию, поскольку реваскуляризация может привести к изменению естественного течения окклюзии сонной артерии [8]. Ограничений относительно размера выборки, продолжительности периода наблюдения, числа зарегистрированных событий или статуса публикации не было.

Стратегия поиска

Для проведения настоящего обзора использовали двойную стратегию поиска. На первом этапе провели поиск в базах данных OVID MEDLINE (с 1946 г.) и EMBASE (с 1947 г.) с использованием соответствующих ключевых слов (например, «сонная», «окклю-
изв*" и «бессимптомная»). Кроме того, провели поиск в специфических базах данных, таких как MEDLINE, OLDMEDLINE, MEDLINE In-Process & Other Non-indexed Citations, MEDLINE Daily, EMBASE Classic и EMBASE. Для сужения поиска по выявлению исследований, посвященных прогнозу, использовали валидированный прогностический фильтр (Приложение II в дополнительных данных on-line) [9]. Поиск дедуплицировали для удаления идентичных ссылок, обнаруженных в нескольких базах данных. Все обнаруженные в результате поиска ссылки затем проверяли на предмет соответствия путем изучения названий работ, абстрактов и ключевых слов. При выявлении соответствующей статьи получали ее полный текст. На втором этапе просматривали ссылки соответствующих исследований для получения дополнительных ссылок на соответствующие работы. В итеративном режиме ссылки, полученные в результате дополнительного поиска, также изучали (по нарастающей). Поиск постоянно обновляли с помощью автоматических рассылок подходящих статей по электронной почте из интерфейса OVID. Статьи включали в обзор на основании вышеупомянутых критериев отбора исследований.

Извлечение данных

Из каждого соответствующего исследования извлекали описательные данные, в т.ч. информацию о цитированиях (авторы и год публикации), исходных характеристиках пациентов (общий размер выборки и число пациентов с БОСА, критерии включения и исключения, интервал обследований, средний возраст и распределение по полу), дизайн исследования (проспективное или ретроспективное), средний возраст пациентов, женский пол, средняя продолжительность периода наблюдения и оценка по шкале Newcastle Ottawa scale. Поскольку в электронной версии Каплана–Мейера, преимущественно использовали модели случайных эффектов, учитывая широкий диапазон частоты встречаемости БОСА, по данным литературы. Точечные оценки с 95% доверительными интервалами (ДИ) рассчитывали во всех исследованиях. Гетерогенность оценивали с использованием статистики I^2 [11]. Как правило, значения I^2 в 25%, 50 и 75% представляют собой низкую, умеренную и высокую степень гетерогенности соответственно [11]. Также обобщали такие показатели, как частота развития ипсилатерального инсульта, ипсилатеральной ТИА, ТИА, смерти, смерти, связанной с инсультом и кардиальной смерти.

Согласно заранее определенному мета-регрессионному анализу было запланировано, что в отношении перивенной конечной точки исхода значение F должно превышать 50%. С использованием однофакторного регрессионного анализа смещанных эффектов и неограниченного максимального правдоподобия проверили влияние следующих независимых переменных на частоту развития инсультного инсульта: размер выборки, год публикации, дизайн исследования (проспективный или ретроспективный), средний возраст пациентов, женский пол, средняя продолжительность периода наблюдения и оценка по шкале Newcastle Ottawa scale. Поскольку после годы появились значительные достижения в медикаментозном лечении атеросклероза, провели анализ по подгруппам по сравнению показателей частоты развития ипсилатерального инсульта в исследованиях, опубликованных до 2000 г. и опубликованных в 2000 г. и позднее.

Наличие систематической ошибки публикации оценивали с помощью процедуры обрезки и заполнения по Дьюалло и Твиди [12]. При проведении этого анализа имитируют данные потенциально недостающих исследований влево или вправо от среднего значения и оценивают изменения конечной точки.

РЕЗУЛЬТАТЫ

Из 1240 найденных ссылок 1002 были признаны уникальными; затем их пересмотрели путем изучения названий статей, абстрактов и ключевых слов (рис. 1 в дополнительных данных on-line). После исключения работ, несоответствующих критериям обзора, изучили полный текст отчетов 73 исследований. Наиболее распространенной причиной исключения исследований было отсутствие зачисления бессимптомных пациентов. В результате обзора в мета-анализ включили данные 13 исследований (таблица 1, таблица I в дополнительных данных on-line) [4–6, 13–22].

В совокупности в эти исследования зачислили 4406 пациентов, из которых у 718 (16%) была БОСА. Медиана возраста пациентов с БОСА составила 67 лет, и среди них были 23% женщин. Большинство исследований было проспективными ($n=10$), а средняя оценка по шкале Newcastle Ottawa scale составила 5 баллов.
(диапазон от 4 до 6 баллов; таблица 2). Для диагностик БОСА во всех, за исключением двух исследований, использовали ультразвуковое обследование. Тем не менее частота проведения ангиографии также в целом была высокой (66% обследованных).

Медиана продолжительности периода наблюдения составила 2,8 года, в общей сложности 1982 человеко-года наблюдений. Годовая частота проведения ангиографии также в целом была высокой (66% обследованных).

Медиана продолжительности периода наблюдения составила 2,8 года, в общей сложности 1982 человеко-года наблюдений. Годовая частота проведения ангиографии также в целом была высокой (66% обследованных).

В 11 исследованиях привели данные о частоте развития инсультов. Годовая частота развития инсультов составила 1,0% (95% ДИ от 0,3 до 1,8%; $F^2=40$). Годовая частота развития инсультов составила 3,0% (95% ДИ от 1,9 до 4,1; $F=0$). В семи исследованиях были приведены данные о летальности; годовая частота развития инсультов составила 7,7% (95% ДИ от 4,3 до 11,2). Гетерогенность была выраженной ($F^2=83$). В шести исследованиях привели данные о развитии летальных исходов, связанных с инсультом, с ежегодной частотой 1,1% (95% ДИ от 0,07 до 2,1; $F^2=63$). Случаи кардиальной смерти регистрировали более часто: 3,3% в год (95% ДИ от 0,07 до 2,1; $F^2=63$). Случаи кардиальной смерти регистрировали более часто: 3,3% в год (95% ДИ от 0,07 до 2,1; $F^2=63$). Гетерогенность была значительной.

Таблица 1. Характеристики исследований

<table>
<thead>
<tr>
<th>Исследование</th>
<th>n (всего)</th>
<th>n (БОСА)</th>
<th>Дизайн исследования</th>
<th>Средняя продолжительность периода наблюдения, годы</th>
<th>Максимальная продолжительность периода наблюдения, годы</th>
<th>Средний возраст, годы</th>
<th>Число лиц женского пола, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.M. Bornstein и J.W. Norris [4]</td>
<td>40</td>
<td>19</td>
<td>Проспективное когортное</td>
<td>4,0</td>
<td>7,0</td>
<td>69</td>
<td>21</td>
</tr>
<tr>
<td>R.W. Countee и T. Vijayanathan [13]</td>
<td>22</td>
<td>10</td>
<td>Ретроспективное когортное</td>
<td>1,9</td>
<td>3,3</td>
<td>НД</td>
<td>0</td>
</tr>
<tr>
<td>M. Hennerici и соавт. [5]</td>
<td>49</td>
<td>49</td>
<td>Проспективное когортное</td>
<td>2,6</td>
<td>7,0</td>
<td>62</td>
<td>22</td>
</tr>
<tr>
<td>I. Kiniigar и соавт. [14]</td>
<td>35</td>
<td>35</td>
<td>Проспективное когортное</td>
<td>3,5</td>
<td>4,0</td>
<td>68</td>
<td>40</td>
</tr>
<tr>
<td>H. Markus и M. Cullinane [15]</td>
<td>107</td>
<td>48</td>
<td>Проспективное когортное</td>
<td>1,7</td>
<td>4,0</td>
<td>НД</td>
<td>НД</td>
</tr>
<tr>
<td>S.C. Nichols и соавт. [16]</td>
<td>24</td>
<td>13</td>
<td>Проспективное когортное</td>
<td>3,3</td>
<td>8,0</td>
<td>67</td>
<td>25</td>
</tr>
<tr>
<td>F. Nonino и соавт. [17]</td>
<td>26</td>
<td>26</td>
<td>Ретроспективное когортное</td>
<td>2,9</td>
<td>7,8</td>
<td>НД</td>
<td>70</td>
</tr>
<tr>
<td>W.J. Powers и соавт. [6]</td>
<td>111</td>
<td>30</td>
<td>Проспективное когортное</td>
<td>2,8</td>
<td>НД</td>
<td>66</td>
<td>23</td>
</tr>
<tr>
<td>W. Rautenberg и соавт. [18]</td>
<td>101</td>
<td>94</td>
<td>Проспективное когортное</td>
<td>3,7</td>
<td>НД</td>
<td>62</td>
<td>19</td>
</tr>
<tr>
<td>F. Verlato и соавт. [19]</td>
<td>41</td>
<td>22</td>
<td>Проспективное когортное</td>
<td>4,0</td>
<td>5,4</td>
<td>65</td>
<td>20</td>
</tr>
<tr>
<td>F. Vernieri и соавт. [20]</td>
<td>65</td>
<td>23</td>
<td>Проспективное когортное</td>
<td>2,0</td>
<td>5,1</td>
<td>68</td>
<td>23</td>
</tr>
<tr>
<td>F. Vernieri и соавт. [21]</td>
<td>104</td>
<td>33</td>
<td>Проспективное когортное</td>
<td>2,0</td>
<td>5,0</td>
<td>69</td>
<td>26</td>
</tr>
<tr>
<td>C. Yang и соавт. [22]</td>
<td>3681</td>
<td>318</td>
<td>Ретроспективное когортное</td>
<td>2,6</td>
<td>20,2</td>
<td>66</td>
<td>29</td>
</tr>
</tbody>
</table>

Примечание. БОСА – бессимптомная окклюзия сонной артерии. НД – нет данных.

Таблица 2. Методологическое качество когортных исследований по шкале Newcastle Ottawa Scale

<table>
<thead>
<tr>
<th>Исследование</th>
<th>Репрезентативность изучаемой выборки (1 балл)</th>
<th>Отражение воздействия (1 балл)</th>
<th>Демонстрация исходного отсутствия инсульта (1 балл)</th>
<th>Оценка исхода (1 балл)</th>
<th>Достаточная продолжительность наблюдения для развития исхода (1 балл)</th>
<th>Адекватность наблюдения (1 балл)</th>
<th>Общая оценка (6 баллов)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.M. Bornstein и J.W. Norris [4]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>R.W. Countee и T. Vijayanathan [13]</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>M. Hennerici и соавт. [5]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>I. Kiniigar и соавт. [14]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>H. Markus и M. Cullinane [15]</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>S.C. Nichols и соавт. [16]</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>F. Nonino и соавт. [17]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>W.J. Powers и соавт. [6]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>W. Rautenberg и соавт. [18]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>F. Verlato и соавт. [19]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>F. Vernieri и соавт. [20]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>F. Vernieri и соавт. [21]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>C. Yang и соавт. [22]</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>
Таблица 3. Мета-анализ частоты развития событий

<table>
<thead>
<tr>
<th>Исход</th>
<th>Исследования, n</th>
<th>События, n</th>
<th>Годовая частота развития событий, % (95% ДИ)</th>
<th>Гетерогенность, I²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ипсилатеральный инсульт</td>
<td>13</td>
<td>29</td>
<td>1,3 (от 0,4 до 2,1)</td>
<td>53</td>
</tr>
<tr>
<td>Тотальный инсульт</td>
<td>12</td>
<td>39</td>
<td>2,0 (от 0,9 до 3,0)</td>
<td>40</td>
</tr>
<tr>
<td>Ипсилатеральная ТИА</td>
<td>11</td>
<td>19</td>
<td>1,0 (от 0,3 до 1,8)</td>
<td>40</td>
</tr>
<tr>
<td>ТИА</td>
<td>9</td>
<td>32</td>
<td>3,0 (от 1,9 до 4,1)</td>
<td>0</td>
</tr>
<tr>
<td>Смерть (от всех причин)</td>
<td>7</td>
<td>151</td>
<td>7,7 (от 4,3 до 11,2)</td>
<td>83</td>
</tr>
<tr>
<td>Смерть (связанная с инсультом)</td>
<td>6</td>
<td>17</td>
<td>1,1 (от 0,07 до 2,1)</td>
<td>63</td>
</tr>
<tr>
<td>Смерть (кардиальная)</td>
<td>6</td>
<td>62</td>
<td>3,3 (от 1,2 до 5,4)</td>
<td>83</td>
</tr>
</tbody>
</table>

Примечание. ДИ – доверительный интервал, ТИА – транзиторная ишемическая атака.

Таблица 4. Детали периода наблюдения в исследованиях

<table>
<thead>
<tr>
<th>Исследование</th>
<th>Утеряны для наблюдения, %</th>
<th>Методология наблюдения</th>
<th>Анализ по таблицам выживания</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.M. Bornstein и J.W. Norris [4]</td>
<td>0</td>
<td>Клиническое наблюдение и каротидная допплерография</td>
<td>Нет</td>
</tr>
<tr>
<td>M. Hennerici и соавт. [5]</td>
<td>4</td>
<td>Клиническое наблюдение и каротидная допплерография</td>
<td>Да</td>
</tr>
<tr>
<td>I. Kiniagar и соавт. [14]</td>
<td>0</td>
<td>Клиническое наблюдение</td>
<td>Да</td>
</tr>
<tr>
<td>H. Markus и M. Cullinane [15]</td>
<td>0</td>
<td>Клиническое наблюдение</td>
<td>Да</td>
</tr>
<tr>
<td>S.C. Nicholls и соавт. [16]</td>
<td>4</td>
<td>Клиническое наблюдение и каротидная допплерография</td>
<td>Да</td>
</tr>
<tr>
<td>F. Nonino и соавт. [17]</td>
<td>0</td>
<td>Клиническое наблюдение</td>
<td>Да</td>
</tr>
<tr>
<td>W.J. Powers и соавт. [6]</td>
<td>0</td>
<td>Клиническое наблюдение</td>
<td>Да</td>
</tr>
<tr>
<td>W. Rautenberg и соавт. [18]</td>
<td>0</td>
<td>Клиническое наблюдение и каротидная допплерография</td>
<td>Нет</td>
</tr>
<tr>
<td>F. Verlato и соавт. [19]</td>
<td>2</td>
<td>Клиническое наблюдение и каротидная допплерография</td>
<td>Да</td>
</tr>
<tr>
<td>F. Vernieri и соавт. [20]</td>
<td>0</td>
<td>Клиническое наблюдение</td>
<td>Да</td>
</tr>
<tr>
<td>F. Vernieri и соавт. [21]</td>
<td>0</td>
<td>Клиническое наблюдение</td>
<td>Да</td>
</tr>
<tr>
<td>C. Yang и соавт. [22]</td>
<td>0</td>
<td>Клиническое наблюдение и каротидная допплерография</td>
<td>Да</td>
</tr>
</tbody>
</table>

Воронкообразная диаграмма зависимости величины СО от частоты

Воронкообразная диаграмма зависимость величины СО от частоты.

Рисунок. Воронкообразная диаграмма стандартных отклонений (СО) значений годовой частоты развития ипсилатерального инсульта. Графическое отображение размера исследования (СО) по вертикальной оси в зависимости от размера эффекта (частота событий) – на горизонтальной оси. Очевидна асимметрия воронкообразной диаграммы с отсутствующими данными исследований слева от среднего показателя.
для большинства показателей, за исключением ТИА и тотального инфаркта мозга.

Результаты мета-регрессионного анализа показали, что частота развития инсультов была обратно пропорциональна размеру выборки (β коэффициент -0,00005; p<0,001), году публикации (-0,00059; p<0,001) и дозе пациентов женского пола (-0,10; p=0,013), но прямо пропорциональна проспективному дизайну исследования (0,01442; p<0,001). Взаимосвязь с возрастом участников выборки, методологическим качеством исследования или продолжительностью периода наблюдения не отмечены. По данным заранее определенного анализа по подгруппам, в исследованиях, опубликованных в 2000 г. и позднее, общая частота развития инсультов была ниже (0,9% в год), чем в исследованиях, опубликованных до 2000 г. (1,5% в год); это различие было статистически значимым (p=0,003).

Воронкообразная диаграмма была асимметричной (см. рисунок) с показателями наличия недостающих исследований слева от среднего показателя. С помощью процедуры обрезки и заполнения по Дьюою и Твиди показано, что после внесения поправки на наличие систематической ошибки публикации скорректированная частота развития инсультов в год составила 0,3% (95% ДИ от -0,4 до 1,1). В таблице 4 детально описаны особенности ведения наблюдения в различных исследованиях.

■ ОБСУЖДЕНИЕ

Основной вывод данного обзора заключается в том, что риск развития инсульта при БОСА невысок: 1,3% в год или 0,3% в год после внесения поправки на наличие систематической ошибки публикации. Таким образом, проведение вмешательств в большинстве случаев БОСА не оправдано, т.к. потенциальные преимущества незначительны, и большинство процедур несут риск, связанный с развитием инсульта и других неблагоприятных исходов.

Это вовсе не означает, что БОСА является патологией с низким риском развития осложнений. Ежегодный риск развития летального исхода достаточно высок (7,7%); примерно в половине случаев причиной смерти является заболевание сердца. У пациентов с БОСА часто выявляют атеросклеротические поражения других критических локализаций, например в коронарных и периферических артериях [5]. У пациентов с такими поражениями достаточно много сосудистых факторов риска, которые необходимо контролировать с целью снижения риска системного атеротромбоза [2]. К таким факторам риска относятся курение, артериальная гипертензия, сахарный диабет и дислипидемия.

Основным ограничением данного обзора является то, что для многих конечных точек, в т.ч. для инсультов, выявлены наличие гетерогенности. Это было обусловлено несколькими факторами, в т.ч. годом публикации, что является важным для эры накопления данных. В более ранних исследованиях были более высокие показатели частоты развития инсультов, чем в поздних исследованиях, вероятно, на причине редкого использования современных препаратов для лечения, таких как статины и ингибиторы ангиотензинпревращающего фермента в более ранних исследованиях. Если это правда, то можно предположить, что частота развития инсульта при БОСА в настоящее время (0,9%) даже ниже, чем математическое ожидание. Кроме того, существует предположение, что имеются недостающие исследования слева от среднего значения, и это в сочетании с набором данных будет способствовать дальнейшему снижению среднего показателя частоты развития инсульта.

С другой стороны, общие показатели частоты развития инсульта и ТИА были выше, чем частота развития инсультов в поздних исследованиях. Показано, что после внесения поправки на наличие систематической ошибки публикации скорректированная частота развития инсульта в год составила 0,3% (95% ДИ от -0,4 до 1,1). В таблице 4 детально описаны особенности ведения наблюдения в различных исследованиях.
внимание на то, что только 23% участников исследования были женского пола, в связи с чем можно предположить наличие существенной систематической ошибки отбора, что затрудняет применение результатов к женщинам. Кроме того, некоторые исследования были небольшими (средний размер выборки 30 человек), что может привести к появлению неточных показателей с широкими 95% ДИ.

ЛИТЕРАТУРА

无症状性颈动脉闭塞的预后
系统综述和 Meta 分析
Prognosis of Asymptomatic Carotid Artery Occlusion
Systematic Review and Meta-Analysis
Daniel G. Hackam, MD, PhD

背景和目的: 本篇系统综述的目的是量化无症状性颈动脉闭塞（asymptomatic carotid artery occlusion, ACAO）患者发生同侧卒中的风险。

方法: MEDLINE、EMBASE 及相关研究文献证实了 ACAO 患者发生同侧卒中的风险。使用随机效应模型评估风险效应，使用 I^2 值量化异质性。主要结局事件是同侧卒中的年发病速率。

结果: 本研究纳入 13 项研究，包括 718 名 ACAO 患者，随访时间中位数为 2.8 年。ACAO 患者同侧卒中的年发病率为 1.3% [95% 可信区间 (confidence interval, CI) 0.4–2.1; I^2=53%]；同侧短暂性脑缺血发作的年发病率为 1.0% (95% CI 0.3–1.8; I^2=40%)；年死亡率为 7.7% (95% CI 4.3–12.2; I^2=83%)。校正主要结局可能的发表偏倚结果提示较低的同侧卒中风险（年率 0.3%; 95% CI, -0.4–1.1）。

结论: ACAO 患者出现卒中相对少见，但是发病患者的死亡率高。这提示在 ACAO 患者中进行强化药物治疗的必要性。

关键词: 颈动脉疾病；缺血发作、短暂性；预后；发表偏倚；风险

数据提取
从所有入选研究中提取描述性变量，包括引用文献信息（作者和发表年份）、患者基线特征（总样本量和 ACAO 患者数量、纳入和排除标准、入组间隔、平均年龄和性别分布）、研究设计类型（前瞻性 vs. 回顾性，由研究调查者定义）、用于诊断的影像学信息（采用的诊断技术和行血管造影术的比例）、随访信息（平均和最长随访时间）及事件。事件包括同侧缺血性卒中、同侧 TIA、全部卒中事件、全部 TIA 事件、死亡、卒中相关性死亡、心源性死亡（定义为由冠状动脉疾病或心力衰竭造成的死亡）。在所有研究中，具有 Kaplan–Meier 事件率的研究优先纳入。然而，在精确的事件率无法获得的情况下，所有研究包含可以计算同侧卒中和其他终点事件的年事件率的足够信息。将所有数据录入到电子表格中。

使用文献质量评价量表评估研究的方法学质量，此量表用于
较2000年以前发表的研究中同侧卒中率和2000年及以后发表的同侧卒中率。

使用Duval和Tweedie的剪补定量分析法分析发表偏倚。该方法是将可能缺失的研究加到平均值的左侧或右侧，然后检验结局变量的变化。

结果从1240条引文中，找到1002条不相同的引文；然后通过查阅题目、摘要和关键词筛选出来这些文章（见在线补充数据图1）。排除不相关的研究后，以全文的形式评估了73个研究。最常见的排除原因是没有纳入无症状的患者。最后，Meta分析纳入了13个研究（见在线数据补充表1）。

这些研究共入组4406例患者，其中718例患者具有ACAO (16%)。这些伴有ACAO患者的年龄中位数为67岁，其中23%为女性。大多数为前瞻性研究（共10个），并且文献质量评价量表评分的中位数为6分。

数据分析
Meta分析的主要结局事件是同侧缺血性卒中，采用年事件率表达。考虑到文献中ACAO的事件率差异很大，使用随机效应模型合并各研究。计算所有研究的95%可信区间（confidence interval，CI）。使用I²值评价异质性。一般来说，I²值25%、50%和75%分别代表轻度、中度和高度异质性，同时整合全部卒中事件、同侧TIA、全部TIA事件、死亡、卒中相关性死亡和心源性死亡。

预先设定的meta回归分析计划主要结局事件的I²值要超过50%。以下独立变量采用单变量混合效应回归和无限制最大似然法检验它们对同侧卒中率的影响：样本量、发表年份、研究设计（前瞻性对回顾性）、平均年龄、女性（%）、平均随访时间以及文献质量评价量表评分。由于动脉粥样硬化内科治疗逐步改善，进行亚组分析来比较2000年前发表的研究中同侧卒中率和2000年及以后发表的同侧卒中率。

使用Duval和Tweedie的剪补定量分析法分析发表偏倚。该方法是将可能缺失的研究加到平均值的左侧或右侧，然后检验结局变量的变化。

结果
从1240条引文中，找到1002条不相同的引文；然后通过查阅题目、摘要和关键词筛选出来这些文章（见在线补充数据图1）。排除不相关的研究后，以全文的形式评估了73个研究。最常见的排除原因是没有纳入无症状的患者。最后，Meta分析纳入了13个研究（见在线数据补充表1）。

这些研究共入组4406例患者，其中718例患者具有ACAO(16%)。这些伴有ACAO患者的年龄中位数为67岁，其中23%为女性。大多数为前瞻性研究（共10个），并且文献质量评价量表评分的中位数为6分。
设定的亚组分析中，2000 年及以后发表的研究表明同侧卒中发生率 (0.9%/年) 相对于 2000 年以前发表的研究结果 (1.5%/年) 有所降低，二者有显著的差异性 (P=0.003)。由于研究的缺失，漏斗图呈非对称性 (见图所示)，平均值向左偏倚。Duval 和 Tweedie 的剪补定量分析提示：基于发表偏倚将同侧卒中年发生率校正后为 0.3%(95% CI, -0.4~1.1)。研究的随访数据在表 4 列出。

讨论

这篇系统回顾的主要结论是 ACAO 患者发生卒中的风险较低：年发病率为 1.3% 或校正发表偏倚后年发病率为 0.3%。由于治疗的潜在效益低、大多数治疗会引起固有的卒中风险及其他不良结局事件，因此，对大部分 ACAO 患者进行干预是不合理的。这并非意味着 ACAO 是一个低风险的疾病。其年死亡率高 (7.7%)，其半数是由心脏疾病所致。ACAO 患者通常患有其他重要部位的动脉粥样硬化，例如冠状动脉和周围动脉。存在血管危险因素高负担的患者，5 分 (范围 4~6 分，见表 2)。除 2 项研究外，其他研究都采用了超声波检查诊断 ACAO。但是，血管造影术检查的使用率也很高 (占受试者的 66%)。

随访时间的中位数是 2.80 年，观察时间总计 1982 人年。同侧的卒中率为 1.3%(95%CI, 0.4~2.1%；见表 3)。2 年和 5 年随访时的卒中率为分别为 2.5% 和 6.3%。在基线评估中存在显著的异质性 (I²=53%)。年全部卒中事件率为 2.0%(95% CI, 0.9~3.0%；I²=40%)。

11 项研究报告了关于同侧 TIA。同侧 TIA 年发生率为 1.0%(95% CI, 0.3~1.8%；I²=40%)。全部 TIA 事件年发生率为 3.0%(95% CI, 1.9~4.1；I²=0)。7 项研究报告了死亡率，年死亡率为 7.7%(95% CI, 4.3~11.2)。异质性存在显著差异 (I²=83%)。6 项研究报告了卒中相关死亡，年死亡率为 1.1%(95% CI, 0.7~2.1；I²=63%)。而心源性死亡更为常见，年死亡率为 3.3%(95% CI, 1.2~5.4；I²=83%)。异质性通过排除了 TIA 和全部卒中之外的患者而得到的。

荟萃回归分析显示同侧卒中与样本容量 (β 系数，-0.00005；P < 0.001)，发表时间 (−0.00059；P < 0.001)，和女性 (−0.10，P=0.013) 呈负相关。与样本年龄、方法学质量、或随访时间没有相关性。在预先设定的亚组分析中，在 2000 年及以后发表的研究表明同侧卒中发生率 (0.9%/年) 相对于 2000 年以前发表的研究结果 (1.5%/年) 有所降低，二者有显著的差异性 (P=0.003)。由于研究的缺失，漏斗图呈非对称性 (见图所示)，平均值向左侧偏倚。Duval 和 Tweedie 的剪补定量分析提示：基于发表偏倚将同侧卒中年发生率校正后为 0.3%(95% CI, -0.4~1.1)。研究的随访数据在表 4 列出。

表 3 事件发生率的荟萃分析

<table>
<thead>
<tr>
<th>结局</th>
<th>研究数量</th>
<th>事件发生数量</th>
<th>年事件发生率，% (95% CI)</th>
<th>I²</th>
</tr>
</thead>
<tbody>
<tr>
<td>同侧卒中</td>
<td>13</td>
<td>29</td>
<td>1.3 (0.4~2.1)</td>
<td>53</td>
</tr>
<tr>
<td>全部卒中</td>
<td>12</td>
<td>39</td>
<td>2.0 (0.9~3.0)</td>
<td>40</td>
</tr>
<tr>
<td>同侧 TIA</td>
<td>11</td>
<td>19</td>
<td>1.0 (0.3~1.8)</td>
<td>40</td>
</tr>
<tr>
<td>全部 TIA</td>
<td>9</td>
<td>32</td>
<td>3.0 (1.9~4.1)</td>
<td>0</td>
</tr>
<tr>
<td>死亡 (全部)</td>
<td>7</td>
<td>151</td>
<td>7.7 (4.3~11.2)</td>
<td>83</td>
</tr>
<tr>
<td>死亡 (卒中相关)</td>
<td>6</td>
<td>17</td>
<td>1.1 (0.07~2.1)</td>
<td>63</td>
</tr>
<tr>
<td>死亡 (心源性)</td>
<td>6</td>
<td>62</td>
<td>3.3 (1.2~5.4)</td>
<td>83</td>
</tr>
</tbody>
</table>

注：CI：可信区间；TIA：短暂性脑缺血发作。

表 4 研究随访的数据

<table>
<thead>
<tr>
<th>研究</th>
<th>失访率, %</th>
<th>随访方法学</th>
<th>生命表分析</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bornstein 和 Norris</td>
<td>0</td>
<td>临床随访和颈动脉超声</td>
<td>无</td>
</tr>
<tr>
<td>Countee 和 Vijayanath</td>
<td>0</td>
<td>临床随访</td>
<td>无</td>
</tr>
<tr>
<td>Hemmer, 韦特塞</td>
<td>4</td>
<td>临床随访和颈动脉超声</td>
<td>有</td>
</tr>
<tr>
<td>Kimigaro</td>
<td>0</td>
<td>临床随访</td>
<td>有</td>
</tr>
<tr>
<td>Markus 和 Cullinez</td>
<td>0</td>
<td>临床随访</td>
<td>有</td>
</tr>
<tr>
<td>Nichols 和 Negro</td>
<td>4</td>
<td>临床随访和颈动脉超声</td>
<td>有</td>
</tr>
<tr>
<td>Nonino 和 Negro</td>
<td>0</td>
<td>临床随访</td>
<td>有</td>
</tr>
<tr>
<td>Powers 和 Negro</td>
<td>0</td>
<td>临床随访</td>
<td>有</td>
</tr>
<tr>
<td>Rautenberg 和 Negro</td>
<td>0</td>
<td>临床随访和颈动脉超声</td>
<td>无</td>
</tr>
<tr>
<td>Vellato 等</td>
<td>2</td>
<td>临床随访和颈动脉超声</td>
<td>有</td>
</tr>
<tr>
<td>Vernier 等, 1999</td>
<td>0</td>
<td>临床随访</td>
<td>有</td>
</tr>
<tr>
<td>Vernier 等, 2001</td>
<td>0</td>
<td>临床随访</td>
<td>有</td>
</tr>
<tr>
<td>梅等</td>
<td>0</td>
<td>临床随访和颈动脉超声</td>
<td>有</td>
</tr>
</tbody>
</table>

图 同侧卒中的年发生率的标准差漏斗图。横轴为研究规模的标准差，纵轴为效应量 (事件率)。漏斗图说明均值左侧有较少的一些研究缺失。
有成果进行相应治疗以降低血栓形成的风险。相关的危险因素包括吸烟、高血压、糖尿病和血脂异常。

这篇系统回顾的主要局限性在于包括同侧卒中在内的终点的异质性。这是由几个相关原因导致，如发表年份，这是代理权责年代。较之新研究，早期的研究有关颈动脉研究较少应用如他汀类及血管紧张素转化酶抑制剂等现在广泛使用的药物进行治疗。如果被证实，这表明近些年的ACA0卒中发病率（0.9%）低于平均发病率的幅度甚至更大。此外，有强烈证据提示丢失的研究结果较少平均发病率的，结合这部分研究报道，将进一步减低平均发病率。另有研究较少应用如他汀类及血管紧张素转化酶抑制剂等现在广泛使用的药物进行治疗。

因此在临床实践中需仔细斟酌该研究结果是否适用于女性患者。此外，相关软件用于统一的标准定义及相关的参考标准。其他的局限性包括缺乏关于血流动力学改变的统一数据，它们可能会定义一个更高卒中风险的亚组。因此在临床实践中需仔细斟酌该研究结果是否适用于女性患者。此外，相关软件用于统一的标准定义及相关的参考标准。其他的局限性包括缺乏关于血流动力学改变的统一数据，它们可能会定义一个更高卒中风险的亚组。
Abstract

Prognosis of Asymptomatic Carotid Artery Occlusion
Systematic Review and Meta-Analysis

Daniel G. Hackam, MD, PhD
Division of Clinical Pharmacology, Departments of Medicine and Clinical Neurological Sciences and Stroke Prevention and Atherosclerosis Research Centre (SPARC), Robarts Research Institute, Western University, London, Ontario, Canada

Table 3 各イベント発現率のメタアナリシス

<table>
<thead>
<tr>
<th>年間イベント発現率</th>
<th>同側脳卒中</th>
<th>全脳卒中</th>
<th>同側 TIA</th>
<th>全 TIA</th>
<th>死亡 (全死因)</th>
<th>死亡 (脳卒中に関連)</th>
<th>死亡 (心臓関連)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3 (0.4-2.1)</td>
<td>13</td>
<td>29</td>
<td>11</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>2.0 (0.9-3.0)</td>
<td>12</td>
<td>39</td>
<td>11</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>1.0 (0.3-1.8)</td>
<td>11</td>
<td>19</td>
<td>11</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>3.0 (1.9-4.1)</td>
<td>9</td>
<td>32</td>
<td>11</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7.7 (4.3-11.2)</td>
<td>7</td>
<td>151</td>
<td>11</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>1.1 (0.07-2.1)</td>
<td>6</td>
<td>17</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>3.3 (1.2-5.4)</td>
<td>6</td>
<td>62</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

CI: 信頼区間, TIA: 一過性脳虚血発作