Silent Brain Infarction in Patients With Asymptomatic Carotid Artery Atherosclerotic Disease

Hediyeh Baradaran, MD; Gino Gialdini, MD; Edward Mtui, MD; Gulce Askin, MPH; Hooman Kamel, MD; Ajay Gupta, MD

Background and Purpose—The relationship between carotid atherosclerosis and ipsilateral silent brain infarction (SBI) is unclear. We tested the hypothesis that extracranial internal carotid artery (ICA) stenosis is associated with a greater prevalence of SBI in the cerebral hemisphere ipsilateral to ICA disease compared with the unaffected, contralateral side.

Methods—We identified patients with unilateral extracranial ICA stenosis $\geq 50\%$ on angiography by standard imaging criteria. We included patients with recent brain magnetic resonance imaging who had no previous history of stroke or transient ischemic attack. Blinded readers ascertained the presence of anterior circulation SBIs. SBI was defined as either a cavitory lacunar infarction in the white or deep gray matter or cortical infarction defined by T2 hyperintense signal in cortical gray matter. The Wilcoxon signed-rank test was used to compare SBI in the cerebral hemispheres and Cohen κ to assess inter-rater reliability of SBI evaluation.

Results—Among 104 patients, we found a higher prevalence of SBIs ipsilateral to ICA disease (33\%) compared with the contralateral side (20.8\%; $P=0.0067$). There was no significant difference in the prevalence of lacunar SBIs (including both white and deep gray matter) between hemispheres ($P=0.109$), but there was a significantly higher prevalence of cortical SBIs occurring downstream from ICA disease ($P=0.0045$). High inter-rater reliability was observed ($\kappa=0.818$).

Conclusions—Patients with asymptomatic ICA disease demonstrate a higher prevalence of SBI downstream from their ICA atherosclerotic disease compared with the contralateral side but only of the cortical and not lacunar SBI subtype.

(Stroke. 2016;47:1368-1370. DOI: 10.1161/STROKEAHA.116.013193.)

Key Words: brain infarction ■ carotid stenosis ■ gray matter ■ magnetic resonance imaging
A neurologist retrospectively collected data on patient demographics, including symptomatic status, and standard vascular risk factors (description of clinical data collection and definitions is given in the online-only Data Supplement). We used McNemar test to compare the prevalence of any SBI and the Wilcoxon signed-rank test to compare the total number of SBIs ipsilateral versus contralateral to extracranial internal carotid artery stenosis.

Results

A total of 104 patients were included for analysis whose demographic characteristics and indications for MRI are available in Table I in the online-only Data Supplement.

The prevalence of any SBI ipsilateral to the side of the carotid atherosclerosis was 33.3% (34/102 patients) compared with a prevalence of 20.8% (21/102 patients) on the contralateral side ($P=0.0067$; Table). When stratified by SBI subtype, there was no significant difference in the prevalence of lacunar SBI ipsilateral compared with contralateral to the carotid stenosis ($P=0.1088$), whereas there was a significant difference in the prevalence of cortical SBI ipsilateral versus contralateral to the side of carotid stenosis ($P=0.0045$).

Similarly, in our analysis of total SBI events, in which any given patient could have multiple SBI events in each hemisphere, there were a total of 58 SBIs in the hemisphere ipsilateral to carotid artery disease compared with 30 events in the contralateral hemisphere ($P=0.0002$; Table). There was no significant difference in the total number of the lacunar events (including both white and deep gray matter) between ipsilateral and contralateral hemispheres ($P=0.10$). There was a significant side-to-side difference in the total number of cortical SBI events, with a higher number of cortical infarctions ipsilateral to the stenotic carotid artery when compared with the contralateral side ($P<0.001$). The results were robust to sensitivity analyses performed comparing patients with stenosis versus occlusion (Results section in the online-only Data Supplement). There was a high interobserver reliability of SBI detection with a κ of 0.82 (95% confidence interval, 0.67–0.96; $P<0.001$).

Discussion

In patients with asymptomatic carotid atherosclerotic disease causing ≥50% luminal stenosis, we found an increased prevalence of SBI ipsilateral to the side of the carotid disease compared with the same patient’s contralateral side. This between-hemisphere asymmetry was present for cortical infarctions but not for lacunar infarcts. Our findings suggest that carotid steno-occlusive disease is associated with increased incidence of SBI in the downstream anterior circulation.

Although previous work has shown that carotid artery disease is associated with the presence of SBI in any cerebral hemisphere, it is not clear from this previous work whether carotid disease is a marker of generalized, elevated cardiovascular risk or if carotid artery lesions are themselves the cause of a significant proportion of these ipsilateral silent thromboembolic events. A previous study showed no association between carotid stenosis and ipsilateral SBI compared with the contralateral side but was performed >20 years ago with subjects scanned on MRI field strengths as low as 0.35T. The improved resolution of modern, higher field-strength MRI equipment used in this study (performed at 1.5T and 3.0T) MRs may have contributed to differences in detectability of SBIs between studies. It is also conceivable that improvements in medical therapy since this previous study may have resulted in a decrease in the risk of SBIs attributable to systemic vascular risk factors, especially hypertension, thereby making the risk attributable to specific carotid lesions more apparent in our current study.

Infarctions resulting from carotid disease are likely caused by a combination of hypoperfusion secondary to the flow-limiting stenosis and by artery-to-artery thromboembolic events from unstable plaque elements. Our findings demonstrate that there are increased cortical infarctions in patients with

![Silent Brain Infarction classification](http://stroke.ahajournals.org/download/1.5/t2-flair.png)

Figure. Silent brain infarction classification. CSF indicates cerebrospinal fluid; and FLAIR, fluid attenuated inversion recovery.
asymptomatic carotid disease. Although our study did not include brain perfusion imaging to evaluate the hemodynamic effect of carotid stenosis, our findings do suggest that thromboembolic infarcts may occur more frequently than infarcts from flow-limiting stenosis because cortical gray matter is more commonly affected in infarctions of embolic cause compared with those occurring secondary to hypoperfusion. This is in keeping with other prospective studies demonstrating that asymptomatic patients with carotid stenosis who have higher rates of asymptomatic embolization on transcranial Doppler are more likely have future ischemic events.

Our study has some limitations. First, because of the retrospective nature of the study, it is possible that the heterogeneity in our cohort may have introduced the presence of significant confounding vascular risk factors that may have mediated the relationship between carotid disease and SBI. We minimized this risk of bias by focusing on a within-subject comparison between cerebral hemispheres, thereby reducing the influence of unmeasured confounding factors that might occur in between-patient comparisons. In addition, we screened ≈20,000 vascular imaging examinations to ensure a relatively homogeneous group of patients in terms of rigorously defined stenosis severity (all ≥50%), brain imaging tests performed, and adequate history to accurately determine the presence of previous ischemic symptoms. Second, not all patients were receiving the most robust medical therapy, including a rate of ≈70% for antiplatelet and antilipid medications. Although this is below the universal utilization of optimal medical therapy currently recommended by guidelines, it does likely reflect a real-world practice pattern and may, in part, be because of the fact that ≈45% of our cohort received a first-time diagnosis of carotid artery stenosis at the time of MRI. Third, ≈25% of the patients included in our study received brain MRI for surveillance of known carotid stenosis, which may call into question whether they were truly asymptomatic. However, because the presence of infarcts is associated with a higher risk of future stroke in patients with asymptomatic carotid artery stenosis, clinicians at our medical center routinely use brain imaging to guide decisions about treatment intensity even in patients who are completely asymptomatic. In addition, all of the patients included in our study had sufficiently detailed medical records to be deemed to be asymptomatic by a neurologist who reviewed their medical records. Although we believe that our approach reasonably minimized the risk of selection bias, we acknowledge that future prospective, population-based studies are required to confirm our findings.

Although it is known that carotid stenosis represents a marker of generalized, elevated cardiovascular risk, our study demonstrates that this form of large-artery atherosclerosis is associated with an asymmetrical burden of SBI in asymptomatic patients. This finding was particularly evident in cortical infarcts, supporting the hypothesis that asymptomatic carotid disease itself is associated with increased risk of ipsilateral covert brain infarctions from artery-to-artery embolism. Taken together, our findings bring into question current treatment guidelines of patients with asymptomatic carotid stenosis. Although patients may be asymptomatic based on self-reported history, these patients may harbor a greater burden of SBI ipsilateral to their carotid disease that may be silent only because they are located in noneloquent areas. Further studies are now warranted to further assess whether asymptomatic carotid stenosis actually entails subclinical artery-to-artery brain infarction and whether targeted vascular risk factor management can mitigate this risk.

Disclosures

None.

References

Silent Brain Infarction in Patients With Asymptomatic Carotid Artery Atherosclerotic Disease
Hediyeh Baradaran, Gino Gialdini, Edward Mtui, Gulce Askin, Hooman Kamel and Ajay Gupta

Stroke. 2016;47:1368-1370; originally published online March 31, 2016; doi: 10.1161/STROKEAHA.116.013193

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/47/5/1368

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2016/03/30/STROKEAHA.116.013193.DC1
http://stroke.ahajournals.org/content/suppl/2016/12/20/STROKEAHA.116.013193.DC2

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at:
http://stroke.ahajournals.org//subscriptions/
SUPPLEMENTAL MATERIAL

Silent Brain Infarction in Patients with Asymptomatic Carotid Artery

Atherosclerotic Disease
Supplemental Methods

MRI Protocol and SBI Imaging Assessment Technique
Standard brain sequences including axial T2-weighted FLAIR, axial T2, axial T1, and diffusion-weighted sequences were obtained. Matrix size for most spin echo sequences was 256x192 on 1.5T and 352x224 on 3T magnets. SBI was defined according to standard definitions characterized into two main categories: lacunar cavitary infarctions and cortical infarctions. To assess reproducibility, a second blinded neuroradiologist independently reassessed a subset of 25 subjects for the presence of SBI. Inter-rater reliability in detecting the presence or absence of SBI was calculated using a Cohen’s Kappa coefficient.

Clinical data collection and definitions
A neurologist retrospectively collected data regarding patient demographics, symptomatic status, diabetes (defined as hemoglobin A1C >6.5% or on diabetes medication), hypertension (blood pressure >140/90 mm Hg or on anti-hypertensive medication), dyslipidemia (low-density lipoprotein >100 mg/dL or on statin therapy), atrial fibrillation, congestive heart failure, coronary artery disease, peripheral vascular disease, and cardiac valvular disease.

Supplemental Results

Cohort Screening Details
We screened 3,921 patients who had a CTA and 16,101 patients who had an MRA of the neck from January 2008 through December 2014. Of those 20,022 patients, 1,631 had carotid stenosis greater than 50%. Of those patients, 872 were excluded because they did not have a brain MRI within 30 days of their index CTA or MRA. Of the remaining 759 patients with carotid stenosis >50% and a brain MRI, we excluded 369 for being symptomatic or having incomplete clinical data necessary for symptom ascertainment and 286 for having bilateral atherosclerotic disease. Of the included patients, 34 individuals (32.7%) had 50-69% carotid stenosis, 48 individuals (46.2%) had 70-99% carotid artery stenosis, and 22 included patients (21.1%) had carotid artery occlusion (Supplemental table I)

Indications for Brain MRI
The indications for brain MRI included altered mental status (25.9%), surveillance of known asymptomatic carotid stenosis (25%), dizziness (11.5%), headache (7.69%), ataxia (6.73%), weakness (6.73%), fall (4.80%), syncope (3.84%), work-up of finding on CT (3.84%), visual symptoms (1.92%), and memory loss (1.92%).

Stenosis versus Occlusion - Sensitivity Analysis
Our results were similar regardless of the severity of atherosclerotic disease, as a sensitivity analysis of the 82 patients with moderate or high-grade carotid stenosis (50-99% stenosis), excluding 20 subjects with occlusion, showed a higher total number of
SBI events occurring ipsilateral to carotid stenosis compared to the contralateral side (p = 0.01).

Indications for Brain MRI – Sensitivity Analysis
We performed a sensitivity analysis that excluded the approximately 25% patients who received brain MRIs for surveillance purposes. We found that upon excluding these patients, our results were not significantly changed: the prevalence of any SBI ipsilateral to the side of the carotid atherosclerosis was 38.7% (29/75), compared to a prevalence of 22.7% (17/75) on the contralateral side (p=0.0073).
<table>
<thead>
<tr>
<th></th>
<th>Entire Cohort (n=104)</th>
<th>Patients with SBI (n=39)</th>
<th>No SBI (n=64)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (Female)</td>
<td>49 (48.5)</td>
<td>18 (47.4)</td>
<td>31 (49.2)</td>
<td>0.86</td>
</tr>
<tr>
<td>Heart Failure</td>
<td>4 (4.0)</td>
<td>1 (2.7)</td>
<td>3 (4.8)</td>
<td>1.00</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>34 (33.7)</td>
<td>15 (39.5)</td>
<td>19 (30.2)</td>
<td>0.34</td>
</tr>
<tr>
<td>Hypertension</td>
<td>75 (74.3)</td>
<td>25 (65.8)</td>
<td>50 (79.4)</td>
<td>0.13</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>54 (53.5)</td>
<td>21 (55.3)</td>
<td>33 (52.4)</td>
<td>0.78</td>
</tr>
<tr>
<td>Atrial Fibrillation</td>
<td>10 (10.0)</td>
<td>6 (16.8)</td>
<td>4 (6.4)</td>
<td>0.17</td>
</tr>
<tr>
<td>CAD</td>
<td>39 (38.6)</td>
<td>15 (39.5)</td>
<td>24 (38.1)</td>
<td>0.89</td>
</tr>
<tr>
<td>Smoking History</td>
<td>56 (55.5)</td>
<td>22 (57.9)</td>
<td>34 (54.0)</td>
<td>0.70</td>
</tr>
<tr>
<td>COPD</td>
<td>11 (10.9)</td>
<td>7 (18.42)</td>
<td>4 (6.4)</td>
<td>0.10</td>
</tr>
<tr>
<td>CKD</td>
<td>12 (11.9)</td>
<td>3 (7.9)</td>
<td>9 (14.3)</td>
<td>0.53</td>
</tr>
<tr>
<td>Medications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspirin</td>
<td>63 (63)</td>
<td>26 (68.4)</td>
<td>37 (59.7)</td>
<td>0.38</td>
</tr>
<tr>
<td>Beta Blockers</td>
<td>35 (35)</td>
<td>13 (34.2)</td>
<td>22 (35.5)</td>
<td>0.90</td>
</tr>
<tr>
<td>Clopidogrel</td>
<td>19 (18.1)</td>
<td>11 (30.0)</td>
<td>8 (12.7)</td>
<td>0.04*</td>
</tr>
<tr>
<td>Warfarin or NOAC's</td>
<td>11 (11)</td>
<td>6 (16.2)</td>
<td>5 (8.0)</td>
<td>0.32</td>
</tr>
<tr>
<td>Other antithrombotics</td>
<td>2 (2)</td>
<td>0 (0)</td>
<td>2 (3.2)</td>
<td>0.53</td>
</tr>
<tr>
<td>(Cilostazol,Dipyridamol,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prasugrel)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statins</td>
<td>69 (69)</td>
<td>27 (71.1)</td>
<td>42 (67.8)</td>
<td>0.73</td>
</tr>
<tr>
<td>Calcium Antagonists</td>
<td>18 (18.2)</td>
<td>8 (21.1)</td>
<td>10 (16.40)</td>
<td>0.56</td>
</tr>
<tr>
<td>Diuretics</td>
<td>24 (24)</td>
<td>5 (13.2)</td>
<td>19 (30.7)</td>
<td>0.06</td>
</tr>
<tr>
<td>ACE Inhibitor</td>
<td>27 (27)</td>
<td>10 (26.3)</td>
<td>17 (27.4)</td>
<td>0.90</td>
</tr>
<tr>
<td>AT-1 antagonists</td>
<td>14 (14)</td>
<td>3 (7.9)</td>
<td>11 (17.8)</td>
<td>0.24</td>
</tr>
<tr>
<td>Insulin</td>
<td>12 (12)</td>
<td>3 (7.9)</td>
<td>9 (14.5)</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Supplemental Table I. Patient Demographics. All data shown as frequency with percent in parenthesis. CAD = Coronary artery disease; COPD: Chronic obstructive pulmonary disease; CKD = Chronic Kidney disease; NOAC= Novel oral anticoagulants. AT-1 antagonists = antithrombin-1 antagonists.
Supplemental Figure I. White Matter Lacunar Infarction. Wedge-shaped area of Fluid attenuated inversion recovery (FLAIR) suppression (A), T2 hyperintensity (B), and T1 hypointensity in the left corona radiata with T2 FLAIR hyperintense irregular margin (A).
Supplemental Figure II. Cortical Infarction. T2 hyperintense (A, B) and T1 hypointense signal (C) in the cortical gray matter of the left superior frontal gyrus in an asymptomatic patient with left-sided carotid artery stenosis.
References

Бессимптомный инфаркт головного мозга у пациентов с бессимптомным атеросклерозом сонной артерии

Departments of Radiology, Neurology, and Healthcare Policy and Research, and Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY.

Предпосылки и цель исследования. Связь между атеросклерозом сонных артерий и наличием инсультов у пациентов бессимптомных церебральных инфарктов (БЦИ) остается неизвестной. Мы проверяли гипотезу о том, что стеноз экстракраниального отдела внутренней сонной артерии (ВСА) ассоциирован с преобладанием очагов БЦИ в коре головного мозга ипсилатерального поражения ВСА по сравнению с контралатеральным. Методы. Мы выявили пациентов с односторонним стенозом экстракраниального отдела ВСА≥50%, согласно данным ангиографии и с использованием стандартных анатомических критериев. В исследование включили пациентов без инсульта или транзиторной ишемической атаки в анамнезе, имеющих результаты недавно проведенной магнитно-резонансной томографии (МРТ) головного мозга. Эксперты, ослепленные относительно клинических данных, изучали результаты МРТ на предмет выявления очагов БЦИ в кортикальном поле. Критерием наличия очага БЦИ считали выявление полостного лакунарного очага ишемии в белом или глубоком сером веществе или кортикального инфаркта, имеющего гиперинтенсивный сигнал на T2-взвешенном изображении в кортикальном сером веществе и гипотенсивный в глубоком сером веществе. Значимый ранговый критерий Уилкоксона использовали для сравнения количества БЦИ в полушариях головного мозга, а критерий каппа (к) Коэна — для оценки межэкспертной надежности при выявлении очагов БЦИ. Результаты. В группе из 104 пациентов мы выявили более высокую (33%) распространенность БЦИ в ипсилатеральной относительно поражению ВСА полушарии по сравнению с контралатеральным полушариям (20,8%; р=0,0067). Существенных различий в распространенности очагов лакунарных БЦИ (в белом и глубоком сером веществе) между полушариями не было (р=0,109), но обнаружили более высокую распространенность кортикальных очагов БЦИ в бассейне пораженной ВСА (р=0,0045). Отметили высокую межэкспертную надежность (к=0,818).

Выводы. У пациентов с бессимптомным стенозом ВСА число очагов БЦИ в бассейне пораженной ВСА по сравнению с контралатеральным полушариям выше, но это относится только к кортикальным, а не лакунарным очагам инфарктов мозга.

Ключевые слова: инфаркт мозга (brain infarction), стеноз сонной артерии (carotid stenosis), серое вещество (gray matter), магнитно-резонансная томография (magnetic resonance imaging)

© American Heart Association, Inc., 2016
Адрес для корреспонденции: Ajay Gupta, MD, 525 E 68th St, Box 141 Starr 8A, NY, NY 10065. E-mail: ajg9004@med.cornell.edu

Мы изучили данные магнитно-резонансной (МР)-ангиографии и компьютерной томографической (КТ)-ангиографии сосудов шеи, выполненных в нашем учреждении за период с января 2008 по декабрь 2014 г. для выявления пациентов, соответствующих следующим критериям включения: (1) наличие одностороннего стеноза экстракраниального отдела внутренней сонной артерии (ВСА)≥50% в соответствии со стандартизированными критериями оценки степени стеноза [5]; (2) наличие адекватной информации в медицинской документации, позволяющей исключить инсульт или транзиторную ишемическую атаку в анамнезе и обеспечить сбор данных о существующих сосудистых факторах риска; (3) наличие результатов МРТ головного мозга, выполненной в течение 1 месяца после учетной документации, позволяющей исключить наличие очагов БЦИ по данным магнитно-резонансной томографии (МРТ) в полушарии, ипсилатеральному стенозу ВСА, по сравнению с контралатеральным полушарием головного мозга.
оценивал нейрорадиолог, ослепленный относительно клинических данных, в т.ч. стороны поражения СА (см. рисунок). Подробный протокол выполнения МР-томографии и техника выявления очагов БЦИ, а также репрезентативные результаты МРТ с очагами БЦИ представлены на рис. I и II в дополнительных данных on-line.

Невролог ретроспективно собирал демографические данные пациентов, включая наличие неврологических симптомов, а также стандартных сосудистых факторов риска (описание процесса сбора клинических данных и использованные определения приведены в дополнительных данных on-line). Мы использовали тест МакНемара для сравнения распространенности любых очагов БЦИ и ранговый критерий Уилкоксона для сравнения общего числа очагов БЦИ в инсилатеральном поражению экстракраниального отдела ВСА полушарии по сравнению с контралатеральным.

РЕЗУЛЬТАТЫ

В анализ включили данные 104 пациентов, их демографические характеристики и показания для проведения МРТ, представленные в таблице I в дополнительных данных on-line.

Распространенность очагов БЦИ в инсилатеральном по отношению к атеросклеротическому поражению СА составила 33,3% (34/102 пациентов) по сравнению с 20,8% (21/102 пациентов) в контралатеральном поражении (р=0,0067; таблица). После стратификации очагов БЦИ по подтипам существенных различий в распространенности лакунарных БЦИ между инсилатеральным и контралатеральным стенозу полушариями не было (р=0,1088) в отличие от более высокой распространенности кортикальных очагов БЦИ в инсилатеральном полушарии (р=0,0045).

Аналогичным образом при проведении анализа общего числа очагов БЦИ, в ходе которого у каждого пациента могло быть несколько очагов БЦИ в каждом полушарии, выявили 58 очагов БЦИ в инсилатеральном поражении СА полушарии по сравнению с 30 очагами БЦИ в контралатеральном полушарии (р=0,0002; таблица). Существенных различий в общем числе лакунарных очагов БЦИ (включая белое и глубокое серое вещества) между инсилатеральным и контралатеральным полушариями не было (р=0,10). Отметим

Рисунок. Классификация очагов бессимптомных церебральных инфарктов.
ЦСЖ – цереброспинальная жидкость, FLAIR – режим с подавлением сигнала свободной воды.

Таблица. Распределение и число очагов БЦИ в различных полушариях головного мозга

<table>
<thead>
<tr>
<th>Параметры</th>
<th>Испилатерально по отношению к стенозу сонной артерии >50%</th>
<th>Контралатерально по отношению к стенозу сонной артерии >50%</th>
<th>Значение р</th>
</tr>
</thead>
<tbody>
<tr>
<td>Распространенность любого типа очага БЦИ в каротидном бассейне, %</td>
<td>33,3</td>
<td>20,8</td>
<td>0,0067</td>
</tr>
<tr>
<td>Лакунарный БЦИ, %</td>
<td>37 (19,6)</td>
<td>26 (13,7)</td>
<td>0,1088</td>
</tr>
<tr>
<td>Кортикальный БЦИ, %</td>
<td>21 (14,7)</td>
<td>4 (3,9)</td>
<td>0,0045</td>
</tr>
<tr>
<td>Общее число очагов БЦИ, на 100 пациентов, среднее, СО</td>
<td>56 (92)</td>
<td>29 (67)</td>
<td>0,0002</td>
</tr>
<tr>
<td>Лакунарный БЦИ</td>
<td>18</td>
<td>15</td>
<td>0,1000</td>
</tr>
<tr>
<td>Кортикальный БЦИ</td>
<td>10</td>
<td>2</td>
<td>0,0009</td>
</tr>
</tbody>
</table>

Примечание. БЦИ – бессимптомный церебральный инфаркт.
наличие значительных различий в общем числе кортикал-ных очагов БЦИ с преобладанием кортикальных очагов БЦИ в интранагальном полушарии (р<0,001). Результаты оказались устойчивыми к анализу чувствительности, в ходе которого проводили сравнение данных пациентов со стенозом и пациентов с окклюзией ВСА (раздел «Результаты» в дополнительных данных on-line). Отметили высокую межэкспертную надежность в отношении выявления очагов БЦИ, при этом значение κ составило 0,82 (95% доверительный интервал от 0,67 до 0,96; р<0,001).

■ ОБСУЖДЕНИЕ

У пациентов с бессимптомным атеросклерозом СА, являющимся причиной развития стеноза ВСА>50%, мы обнаружили выраженное преобладание БЦИ в интранагальной степени по сравнению с контролларальным полушарием у одного и того же пациента. Эта межполушарная асимметрия была справедлива в отношении кортикальных, но не лакунарных очагов инфаркта. Полученные результаты свидетельствуют о том, что стеноз-окклюзирующее поражение СА ассоциировано с повышенным числом очагов БЦИ в каротидном бассейне.

Несмотря на то что в ранее проведенном исследовании выявили связь между патологией СА и наличием очагов БЦИ в любом полушарии головного мозга [3], по результатам этой работы непонятно, является ли поражение СА маркером генерализованного повышения сердечно-сосудистого риска или повреждения СА сами по себе являются причиной развития значительной доли этих интраполушарных бессимптомных тромбоэмболических событий. В ранее проведенном исследовании продемонстрировали отсутствие связи между стенозом СА и наличием очагов БЦИ в интраполушарном, а не контралатеральном полушарии, но это исследование было выполнено более 20 лет с использованием МР-томографа с силой магнитного поля менее 0,35 Тл [2]. Использование в настоящем исследовании современных МР-сканеров с более высокой силой магнитного поля (1,5 Тл и 3,0 Тл) и лучшим разрешением, возможно, было причиной выявления различий в частоте обнаружения очагов БЦИ между исследованиями [1]. Кроме того, существует вероятность того, что улучшение в медиаментозной терапии от момента проведения прошлого исследования могло привести к уменьшению риска развития очагов БЦИ, связанного с влиянием системных сосудистых факторов риска, особенно артериальной гипертензии. В связи с этим риск, связанный с наличием атеросклеротического поражения СА в настоящем исследовании, стал более очевидным.

Инфаркты при поражении СА, вероятно, развиваются в результате гипоперфузии на фоне ограничивающего кровоток стеноза и тромбоэмболических событий, связанных с наличием нестабильной бляшки [6]. Результаты настоящего исследования демонстрируют увеличение числа кортикальных инфарктов у пациентов с бессимптомным поражением СА. Хотя в настоящем исследовании не использовали результаты визуализации церебральной перфузии для оценки гемодинамического эффекта стеноза, наши результаты позволяют предположить, что тромбоэмболические инфаркты развиваются чаще, чем инфаркты по причине стеноза, поскольку кортикальное серое вещество чаще поражается при эмболических событиях, чем при гипоперфузии [7]. Это согласуется с данными других проспективных исследований, демонстрирующих, что у пациентов с бессимптомным стенозом СА и высокой распространенностью бессимптомной эмболии, по данным транскраниальной допплерографии, повышен риск развития ишемических событий [8].

Наше исследование имеет ряд ограничений. Во-первых, из-за ретроспективного дизайна исследования вполне возможно, что гетерогенность в нашей выборке могла привести к наличию значимых вмешивающихся сусудистых факторов риска, опосредующих связь между поражением СА и наличием очагов БЦИ. Мы минимизировали риск систематической ошибки путем сосредоточения внимания на внутриобъектном сравнении полушарий головного мозга, тем самым уменьшая влияние неизмеримых вмешивающихся факторов, возникающего при сравнении данных разных пациентов. Кроме того, мы провели скрининг ≈20 000 результатов визуализации сосудов для получения относительно однородной группы пациентов со строго определенной степенью тяжести стеноза (все >50%), данными визуализации головного мозга и адекватными данными, позволяющими точно определить наличие симптомов ишемии мозга в анамнезе. Во-вторых, не все пациенты получали оптимальную медикаментозную терапию, частота использования антиагрегантов и гиполипидемических препаратов составила ≈70%. Хотя этот показатель ниже рекомендованного современными стандартами универсального применения оптимальной медикаментозной терапии, он, скорее всего, отражает реальную практику и может, в частности быть обусловлен тем фактом, что ≈45% пациентам в нашем исследовании стеноз СА впервые диагностировали во время проведения МРТ. В-третьих, ≈25% pacientes, включенным в наше исследование, МРТ головного мозга провели в рамках обследования по причине известного стеноза СА, что может поставить под сомнение вопрос, были ли эти пациенты действительно бессимптомными. Тем не менее, т.к. наличие очагов инфаркта ассоциировано с более высоким риском развития инсульта в будущем у пациентов с бессимптомным стенозом СА [8], врачи в нашем медицинском центре обычно используют результаты визуализации головного мозга для принятия решений об интенсивности лечения даже у абсолютно бессимптомных пациентов. Кроме того, у всех пациентов, включенных в наше исследование, были достаточно подробные медицинские записи, которые позволяли неврологу, изучившему эту документацию, считать их бессимптомными. Хотя мы считаем, что наш подход позволил в значительной степени минимизировать риск систематической ошибки отбора, нужно признать, что для подтверждения полученных выводов необходимо проведение дальнейших проспективных популяционных исследований.
Общеизвестно, что стеноз СА представляет собой маркер повышенного общего риска развития сердечно-сосудистых заболеваний, однако результаты настоящего исследования свидетельствуют о том, что эта форма атеросклероза крупных артерий ассоциирована с асимметричным распределением очагов БЦИ у бессимптомных пациентов. Этот вывод особенно справедлив в отношении кортикальных инфарктов и поддерживает гипотезу, что само по себе бессимптомное поражение СА ассоциировано с повышенным риском развития бессимптомных инсультов ипсилатеральных инфарктов головного на фоне эмболии. Полученные результаты в совокупности ставят под сомнение современные стандарты по лечению пациентов с бессимптомным стенозом СА. Пациентов можно считать бессимптомными по данным анамнеза, но у них высока вероятность выявления большого количества очагов БЦИ в инсультов, которые могут не проявляться клинически в связи с их локализацией не в функционально важной зоне. Оправдано проведение дальнейших исследований для изучения вопроса о том, действительно ли бессимптомный стеноз СА является причиной развития субклинического эмболического церебрального инфаркта, и позволяет ли целевое управление сосудистыми факторами риска снизить риск развития таких инфарктов.

ЛИТЕРАТУРА

