Clinical Implications and Determinants of Left Atrial Mechanical Dysfunction in Patients With Stroke

Darae Kim, MD*; Chi Young Shim, MD, PhD*; Geu-Ru Hong, MD, PhD; Mi-Hyun Kim, MD; Jiwon Seo, MD; In Jeong Cho, MD; Young Dae Kim, MD, PhD; Hyuk-Jae Chang, MD, PhD; Jong-Won Ha, MD, PhD; Ji Hoe Heo, MD, PhD; Namsik Chung, MD, PhD

Background and Purpose—The evaluation of sources of cardioembolism with transesophageal echocardiography (TEE) in patients with stroke is crucial but semi-invasive. We hypothesized that the size and mechanical function of the left atrium (LA) assessed by transthoracic echocardiography (TTE) could provide useful information on high risk of cardioembolism on TEE in patients with stroke. Furthermore, we sought to define the determinants of LA mechanical dysfunction in these patients.

Methods—A total of 248 patients with acute ischemic stroke (147 men; 64±13 years) who underwent 2-dimensional and speckle tracking TTE followed by TEE were analyzed.

Results—LA appendage emptying velocity, prevalence of LA or LA appendage thrombus, prevalence of aortic plaques, and incidence of embolic stroke showed significant differences among the 4 groups classified according to the median values of the LA volume index and global LA longitudinal strain (LALS). Patients at high risk of cardioembolism evidenced by TEE revealed significantly larger LA volume index and lower global LALS than those without. Global LALS (cutoff, 11.5%; area under the curve, 0.947; sensitivity, 100%; specificity, 91%; P<0.001) revealed a significantly better diagnostic power (P=0.04) for LA or LA appendage thrombus than LA volume index (cutoff, 36.2 mL/m²; area under the curve, 0.823; sensitivity, 88%; specificity, 75%; P=0.002). Age, left ventricular systolic function, LA volume index, and pulse wave velocity were independent determinants for global LALS.

Conclusions—LA mechanical dysfunction is closely associated with high risks of cardioembolism. Global LALS assessed by speckle tracking TTE well discriminates the presence of LA or LA appendage thrombus on TEE in patients with acute ischemic stroke. (Stroke. 2016;47:1444-1451. DOI: 10.1161/STROKEAHA.115.011656.)

Key Words: atrial appendage ■ echocardiography, transesophageal ■ heart atria ■ pulse wave analysis ■ stroke ■ thrombosis

Cardiovascular evaluation in patients presenting with acute ischemic stroke is clinically important not only for the evaluation of potential sources of cardioembolism but also for the assessment of coexisting cardiovascular disease and risk of future events. During the past few decades, transesophageal echocardiography (TEE) has been the most sensitive technique for the detection of thrombi or flow stasis in the left atrium (LA) or LA appendage (LAA), as well as aortic athromr.1-3 TEE is widely available for patients with acute ischemic stroke; however, some patients, particularly those with neurological disabilities, cannot undergo TEE because of its semi-invasive nature.4 Therefore, dual-enhanced cardiac computed tomography with electrocardiographic gating has been suggested as an alternative imaging modality for detecting LA or LAA thrombi.5 However, it also has several issues, including radiation exposure, renal dysfunction, and allergic reaction to contrast media.

Recent studies suggest that enlargement of LA is associated with both first and recurrent episodes of stroke.5,6 Association of LA size and stroke is not well understood; however, compromised LA function would result in flow stasis and increase the risk of embolism. The global LA longitudinal strain (LALS) assessed by 2-dimensional (2D) speckle tracking TTE is a relatively simple and reproducible technique to assess LA function.6 We hypothesized that enlargement and impaired mechanical function of LA assessed by TTE with speckle tracking imaging could provide useful information for high risk of cardioembolism detected from TEE in patients...
with stroke. Furthermore, we sought to define the major determinants of LA mechanical dysfunction in these patients.

Methods

Study Subjects
The study population consisted of 316 acute patients with ischemic stroke who were referred to the cardiology division for both TTE and TEE based on part of the standard evaluation except in patients with decreased consciousness, impending brain herniation, poor systemic conditions, inability to accept an esophageal transducer because of swallowing difficulty or tracheal intubation, or lack of informed consent from April 2012 to June 2013. Exclusion criteria were significant valvular heart disease (n=28), previous history of valve repair or replacement (n=7), previous history of radiofrequency ablation (n=2), previous history of atrial fibrillation (AF; n=20), and newly documented AF (n=11) during TEE or TTE. Finally, a total of 248 patients were analyzed. All underwent TTE and TEE within 1 week of the initial stroke. Ischemic stroke was confirmed by a focal neurological deficit of sudden onset and magnetic resonance imaging findings. Patients with a transient ischemic attack and negative imaging findings were not included. Clinical information of patients was determined at the time of examination. The subtypes of ischemic stroke were classified according to the Trial of Org 10172 in Acute Stroke Treatment criteria (TOAST criteria) by neurologists. Twelve-lead electrocardiography was done at admission, and continuous 12-lead electrocardiographic monitoring was performed on the stroke unit within the first 48 to 72 hours after admission to detect silent paroxysmal AF.

To assess the various parameters in relation to size and mechanical function of LA, patients were categorized into 4 groups according to their median LA volume index (28 mL/m²) and global LALS (23%): group 1 (n=81), small LA with preserved LALS; group 2 (n=43), large LA with preserved LALS; group 3 (n=43), small LA with impaired LALS; and group 4 (n=81), large LA with impaired LALS.

Conventional Transthoracic Echocardiography
Each patient underwent a comprehensive TTE study using a Vivid 7 or Vivid 9 cardiovascular ultrasound system (GE Medical Systems, Horten, Norway), equipped with 2.5- to 3.5-MHz phased-array sector probes. During TTE, 1-lead electrocardiographic was recorded continuously. Standard 2D and Doppler measurements were performed per the recommendations of the American Society of Echocardiography guidelines.

Speckle Tracking Echocardiography
Each patient underwent a 2D speckle tracking echocardiography of the LA. Three consecutive cardiac cycles were recorded and averaged, and the frame rates were set to 60 to 80 frames per second. The analysis was performed offline using customized software (EchoPAC PC; GE Medical Systems). The LA endocardial border was manually traced in both 4-chamber and 2-chamber views. Because 2 segments of the LA roof demonstrated a lower longitudinal strain curves than those of the other 4, they were excluded from both the 4-chamber and the 2-chamber views. Therefore, global peak LALS during the ventricular systole was then measured by averaging the values obtained in the 8 other LA segments. The time to peak LALS was also measured as the average of the 8 segments and by calculating the time delay from the QRS to the positive peak LALS. An experienced cardiologist unaware of the patients’ information analyzed all echocardiographic values.

Transesophageal Echocardiography
TEE was performed immediately after TTE using a 5- to 7-MHz multplane, and images were independently reviewed by 2 experienced cardiologists. Multiple standard tomographic planes were imaged, and LAA emptying velocity, the presence of LA or LAA thrombi, the presence of patent foramen ovale, and severity of spontaneous echo contrast in the LA or LAA were determined. Peak LAA emptying velocities were measured using pulsed Doppler by placing the sample volume ~1 cm inside of the orifice of the LAA. The peak emptying wavelets were measured in 3 consecutive cycles, and the maximal velocities were then averaged. An LA or LAA thrombus was diagnosed by the presence of an echo-dense mass in the LA or LAA, distinct from the endocardium and the pectinate muscles of the LA.

The spontaneous echo contrast was diagnosed by the presence of characteristic dynamic smoke-like swirling echo in the LA or LAA, and the severity was classified into 1 of the 4 grades as previously described. A patent foramen ovale was considered to be present if any microbubble was seen in the left-sided cardiac chambers within 3 cardiac cycles using saline contrast injections.

Aortic assessment was performed in all patients. The proximal aorta (aortic arch and ascending aorta) was imaged in short and long axes. An aortic plaque was defined as a hyperechogenic thickened area causing protrusion in the arterial lumen with >2 mm. Aortic plaques were classified as simple or complex on the basis of morphology. A complex aortic plaque was defined as a plaque that protrudes at least 4 mm into the aortic lumen or that is associated with ulceration or mobile features. Maximal aortic wall thickness was measured in the descending aorta perpendicular to the aortic wall. After comprehensive assessments, high-risk findings of cardioembolism from TEE were defined by the presence of thrombi at LA or LAA, LAA emptying velocity <20 cm/s, or the presence of complex atheroma.

Pulse Wave Velocity
Brachial ankle pulse wave velocity (baPWV) was obtained by 1 measurement within 7 days of admission in the supine position using an automated device (VP-1000; Colin Co Ltd, Komaki, Japan) as described previously. For analysis, the averaged value of baPWV from both sides was calculated.

Statistical Analysis
Continuous variables were presented as mean±SD and categorical variables as absolute and relative frequencies (% of the group total). Among the data, continuous variables were compared between the groups using the Student t test (for 2-group comparisons) and analysis of variance (for 4-group comparisons), whereas the categorical variables were compared by χ² test or analysis of variance. We constructed the receiver operating characteristic curves to determine the diagnostic ability of global LALS or LA volume index. The diagnostic performances of the global LALS and LA volume index were compared through the Delong tests. To find the independent determinants of global LALS, multiple linear regression analysis was performed.

Results

Clinical Characteristics
The mean age of patients was 64±13 years, and men made up 58.1% of the population. Table 1 shows baseline clinical characteristics of the 4 groups. Patients in group 4, who were characterized by large LA volume and decreased global LALS, were significantly older than those in the other groups. There was no statistically significant difference in the distribution of sex or comorbidities. In terms of type of stroke, embolic stroke was the most frequent in group 4 with statistical significance. Systolic blood pressure and pulse pressure in group 4 were significantly higher than those in group 1, and baPWV increased from group 1 to 4 in a stepwise manner.

Echocardiographic Characteristics
Echocardiographic parameters are described in Table 2. Because the patients were classified into 4 groups based on their LA volume index and global LALS, the LA volume index and global LALS were significantly different among the
groups. Time to peak LALS was significantly shorter in group 1 than in other groups, whereas A′ velocity was significantly lower in group 4 than other groups. The parameters representing LV structure, systolic function, and diastolic function were also different among the groups. The patients in groups 2 and 4, who had a large LA size, tended to have a larger LV dimension and higher LV mass index than those in groups 1 and 3. Patients in group 4 showed an impaired LV longitudinal systolic and diastolic function and higher estimated LV filling (E/e′) pressure than other groups. In terms of TEE parameters, LAA emptying velocities were significantly lower in group 4, and the incidences of thrombus or spontaneous echo contrast in LA or LAA also differed significantly. No patients in group 1 or 2 showed an LA or LAA thrombus. Aortic wall thickness increased gradually from group 1 to 4. The incidence of aortic arch plaque was significantly higher in group 4. Interestingly, the incidence of complex aortic plaques increased in a stepwise manner from group 1 to 4. Incidence of patent foramen ovale was significantly different among 4 groups and most frequently found in group 1.

Diagnostic Performance of LA Volume Index and Global LALS for High Risk of Cardioembolism
A global LALS <11.5% showed a significantly better diagnostic performance (P=0.04) for the presence of an LA or LAA thrombus (area under the curve [AUC], 0.95; sensitivity, 100%; specificity, 91%; P<0.001) than the LA volume index (cutoff, 36.2 mL/m²; AUC, 0.82; sensitivity, 88%; specificity, 75%; P=0.002; Figure 1A). All 8 patients who presented with thrombus at LA or LAA showed LALS <11.5%, whereas their LA volume index showed a wide range of distribution (Figure 1B). Patients with the global LALS <11.5% were significantly older than those with the global LALS >11.5% (71±10 versus 62±12 years; P<0.01).

For the decreased LAA emptying velocity <20 cm/s, which is prone to thrombus formation, both global LALS (cutoff, 10.8%; AUC, 0.91; sensitivity, 80%; specificity, 92%; P<0.01) and LA volume index (cutoff, 41.6 mL/m²; AUC, 0.91; sensitivity, 80%; specificity, 88%; P<0.001) showed good diagnostic values without significant difference between 2 parameters (P=0.95). On the other hand, the global LALS (cutoff, 24.2%; AUC, 0.74; sensitivity, 55%; specificity, 84%; P<0.001) showed better diagnostic performances of the preserved LAA emptying velocity ≥40 cm/s than LA volume index (cutoff, 29.5 mL/m²; AUC, 0.64; sensitivity, 57%; specificity, 73%; P=0.01) with a significant difference (P=0.03).

Both global LALS and LA volume index showed good diagnostic performances for the complex aortic plaque (AUC, 0.64; sensitivity, 72%; specificity, 51%; P<0.01 and AUC, 0.61; sensitivity, 61%; specificity, 55%; P=0.011,

Table 1. Clinical Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Group 1 (n=81)</th>
<th>Group 2 (n=43)</th>
<th>Group 3 (n=43)</th>
<th>Group 4 (n=81)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>57.9±12.2</td>
<td>59.6±11.9</td>
<td>64.1±11.2*</td>
<td>70.1±10.2*†‡</td>
</tr>
<tr>
<td>Male sex, n (%)</td>
<td>52 (64)</td>
<td>25 (58)</td>
<td>26 (61)</td>
<td>44 (54)</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>24.0±3.6</td>
<td>24.0±3.0</td>
<td>24.3±2.9</td>
<td>23.5±3.3</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>47 (58)</td>
<td>31 (72)</td>
<td>27 (63)</td>
<td>61 (76)*</td>
</tr>
<tr>
<td>Diabetes mellitus, n (%)</td>
<td>24 (30)</td>
<td>14 (33)</td>
<td>18 (42)</td>
<td>27 (33)</td>
</tr>
<tr>
<td>Dyslipidemia, n (%)</td>
<td>22 (27)</td>
<td>8 (19)</td>
<td>10 (23)</td>
<td>12 (15)</td>
</tr>
<tr>
<td>Smoking, n (%)</td>
<td>26 (32)</td>
<td>15 (35)</td>
<td>15 (35)</td>
<td>27 (33)</td>
</tr>
<tr>
<td>Previous stroke, n (%)</td>
<td>15 (19)</td>
<td>9 (21)</td>
<td>8 (19)</td>
<td>20 (25)</td>
</tr>
<tr>
<td>Previous MI, n (%)</td>
<td>1 (1)</td>
<td>1 (2)</td>
<td>3 (7)</td>
<td>3 (4)</td>
</tr>
<tr>
<td>Type of stroke, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large artery</td>
<td>27 (33)</td>
<td>12 (28)</td>
<td>14 (32)</td>
<td>25 (31)</td>
</tr>
<tr>
<td>atherosclerosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardioembolism</td>
<td>13 (16)</td>
<td>8 (19)</td>
<td>6 (14)</td>
<td>29 (36)*†‡</td>
</tr>
<tr>
<td>Lacunar</td>
<td>23 (28)</td>
<td>14 (33)</td>
<td>11 (26)</td>
<td>13 (16)</td>
</tr>
<tr>
<td>Cryptogenic</td>
<td>19 (34)</td>
<td>9 (21)</td>
<td>12 (28)</td>
<td>14 (19)</td>
</tr>
<tr>
<td>Systolic blood pressure, mm Hg</td>
<td>136±19</td>
<td>143±20</td>
<td>137±17</td>
<td>142±19*</td>
</tr>
<tr>
<td>Diastolic blood pressure, mm Hg</td>
<td>81±15</td>
<td>84±14</td>
<td>81±13</td>
<td>81±13</td>
</tr>
<tr>
<td>Pulse pressure, mm Hg</td>
<td>55±17</td>
<td>59±17</td>
<td>56±12</td>
<td>61±16*</td>
</tr>
<tr>
<td>Brachial ankle PWV, m/s</td>
<td>1797±497</td>
<td>1802±361</td>
<td>2067±652†</td>
<td>2111±425†</td>
</tr>
</tbody>
</table>

Group 1, small LA with preserved LALS; group 2, large LA with preserved LALS; group 3, small LA with impaired LALS; and group 4, large LA with impaired LALS. LA indicates left atrium; LALS, left atrial longitudinal strain; MI, myocardial infarction; and PWV, pulse wave velocity.

*P<0.05, compared with group 1.
†P<0.05, compared with group 2.
‡P<0.05, compared with group 3.
respectively) without significant differences between 2 parameters ($P=0.44$).

Figure 2 describes different LA size and mechanical function in patients with or without high-risk findings of cardioembolism detected from TEE. Patients at high risks of cardioembolism revealed significantly larger LA volume index (36 ± 14 versus 29 ± 10 mL/m2; $P<0.01$) and lower global LALS ($19\pm9\%$ versus $25\pm8\%$; $P<0.01$) than those without.

Determinants of LA Mechanical Function

Simple correlation analysis data are shown in Table I in the online-only Data Supplement. Global LALS revealed significant negative correlations with age, LV mass index, E/e', aortic wall thickness, and baPWV. Global LALS showed significant positive correlations with LV ejection fraction, e' velocity, and S' velocity. Global LALS showed a better correlation with E' ($r=0.169; P=0.008$) and S' ($r=0.445; P<0.001$) compared with the LA volume index. The global LALS also showed a better correlation with baPWV ($r=0.335; P<0.001$) and aortic wall thickness ($r=0.304; P<0.001$) compared with the LA volume index. Multiple linear regression analysis showed that age, LV ejection fraction, S' velocity, LA volume index, and baPWV were independent determinants of global LALS (Table 3).

Discussion

The principal findings in the present study are that (1) LA enlargement and impaired mechanical function assessed comprehensively by 2D TTE with speckle tracking imaging reflect the presence of high-risk findings for cardioembolism on TEE in patients with acute ischemic stroke; (2) global LALS from
TTE speckle tracking showed good diagnostic values for the presence of flow stasis, thrombus in the LA and LAA, and complex aortic plaques in patients with ischemic stroke; and (3) LA mechanical function was independently correlated with age, LV function, LA volume index, and aortic stiffness.

Overall, the assessment of LA size and mechanical function with comprehensive TTE is useful for the risk assessment of cardioembolism in patients with ischemic stroke. The results of our study suggest clinical importance of LA mechanical function in patients with stroke and potential diagnostic usefulness of global LALS when patients with acute ischemic stroke cannot undergo a TEE.

Clinical Effect of LA Mechanical Function in Stroke
Previous studies showed a strong relationship between LA volume and disease prognosis in various cardiovascular diseases, such as heart failure, myocardial infarction, cardiomyopathy, and AF.20–22 Enlargement of LA is reported to be associated with both the initial ischemic stroke and recurrent cardioembolism or cryptogenic stroke.7 Although mechanism is still unclear, association of LA size with stroke incidence implicates clinical significance of LA function in patients with stroke. Two-dimensional speckle tracking is a new technique that allows a more direct measurement of LA contractility of endocardium and passive deformation.8 Global LALS more sensitively reflects the LA function than does LA volume as functional change precedes morphological changes.

Previous studies have consistently reported that global LALS predicts thromboembolic risks in AF population. Kuppahally et al23 described that LA fibrosis is inversely correlated with LALS in patients with AF, implying that fibrosis impairs LA compliance. Obokata et al reported that LALS provides incremental diagnostic information over the CHA2DS2-VASC score (a risk factor-based risk stratification schemes for embolisms in patients with AF) alone in patients with AF, emphasizing the role of LALS in risk stratification for stroke.12 A previous cross-sectional study by Saha et al24 demonstrated that global LALS was a predictor of stroke in patients with AF. In contrast to previous studies that were limited to patients with AF, the current study included acute ischemic stroke patients with normal sinus rhythm, which reflects real-world data.

Our results in this study confirm that impaired global LALS correlates with a decreased LA emptying velocity, the presence of flow stasis, thrombus in LA or LAA, or complex aortic atheroma. Notably, the diagnostic performance of global LALS to detect thrombus in LA or LAA was significantly better than that of LA volume index. Eight patients from our cohort who presented with thrombus in LA or LAA showed relatively wide distribution of LA volume index, whereas all had decreased LALS <11.5%. Therefore, in real-world practice, when a patient with stroke cannot undergo TEE because of various reasons, such as contraindications for TEE, expense of medical cost, or neurological disabilities, the global LALS may be used as an alternative to rule out the likelihood of thrombus and to determine subsequent needs for other imaging assessments. The global LALS may give valuable additive information for the possible presence of thrombus in LA or LAA. Thus, if a patient shows low LALS <11.5%, TEE should be performed to verify thrombus to decide on the necessity of anticoagulant treatment. If TEE cannot be performed, alternative imaging modalities, such as cardiac computed tomography or magnetic resonance imaging, may be used cost effectively in patients with significant LA mechanical dysfunction.

From our results, both global LALS and LA volume index showed good diagnostic values for LAA emptying velocity <20 cm/s with no significant differences in diagnostic performance. However, when diagnosing thrombus in LA or LAA or LAA emptying velocity ≥40 cm/s, the diagnostic power of the global LALS was significantly better than that of the LA volume index. This discrepancy can be explained by different stages of diseased LA and higher sensitivity of the global LALS for detecting LA dysfunction. This indicates that the global LALS better reflects LA function than LA volume index even in subclinical stage when LAA emptying velocity ≥40 cm/s. When the function of the LA is impaired enough to decrease LAA emptying velocity <20 cm/s, it is most often accompanied by an enlargement of the LA. In such stages, the diagnostic power of the global LALS becomes similar to that of the LA volume index. Moreover, global LALS may also be
informative even with a similar LA volume. In our study, we grouped patients into 4 groups according to the median values of global LALS and LA volume index to demonstrate different stages of LA dysfunction according to size and function. When comparing groups with an already large LA volume index (group 2 versus 4), the presence of LA or LAA thrombosis or overall spontaneous echo contrast was significantly different even with a similar LA volume. Overall, the clinical usefulness of global LALS may be appreciated more in patients with early- or advanced-stage LA dysfunction. Thus, LALS can provide additive information to LA volume index.

Mechanical Linkage Between Aortic Stiffness and LA Function

Previous studies have consistently revealed relationships between aortic stiffness and LV diastolic dysfunction in various populations. In our study, LALS was closely correlated with baPWV (r=0.36; P<0.001). This result provides an insight into atrial ventricular–arterial coupling in concordance with previous studies. Impaired LA and LV relaxation in longitudinal directions has been demonstrated to be the early signs of abnormal LA–LV coupling related to the arterial stiffness in preclinical patients with cardiovascular risk factors, and only peak LA strain rate during ventricular systole was significantly related to carotid arterial stiffness. In our study, multivariate regression analysis revealed that baPWV showed an independent correlation with the global LALS even after controlling for age, sex, body mass index, comorbidity, and LV functional parameters.

Our study also showed a close correlation between the global LALS and the presence of aortic plaques. We cautiously interpreted that the linkage between the global LALS and aortic plaque can be explained by increased stroke burden. Aortic plaque is one of the parameters in CHA2DS2-V ASc score and clearly is one of clinical risk factors for stroke. Recent studies have already shown an association between global LALS and CHA2DS2-V ASc although limited in AF population. Also, patients with aortic atheroma are likely to have other underlying cardiovascular diseases, such as hypertension, which may affect LV diastolic function, and decreased function of LA. Therefore, the results from our study provide potential role for global LALS for cardiovascular risk evaluation and the presence of complex aortic atheroma in aorta especially when TEE cannot be done because of its semi-invasive nature.

From our result, age was also an important determinant for LA mechanical function. Multivariate analysis showed independent correlation between age and global LALS after adjustment of other variables, which is consistent with previous studies. Normal aging is associated with reduced LV diastolic function and atrial fibrosis, which leads to deterioration of LA function. A previous study suggested that although normal aging is associated with enlargement of LA volume, it does not significantly alter LA volume index until the eighth decade of life. Global LALS may be more appreciated than LA volume index as it better reflects earlier change of LV function.

Study Limitations

A few limitations should be addressed in this study. First, this study is a cross-sectional study from a single center with a
limited number of patients who underwent TEE. Therefore, there would be a selection bias in this study’s stroke population because of the observational nature of our study. Further longitudinal study with larger population is needed to determine interactions of clinical variables with LA mechanical function, as well as the causality of the global LALS and clinical outcome. However, the results from our study provide insightful information for future investigations on LA mechanical function in relation to future risk of cardioembolism in patients with stroke. Second, the global LALS was analyzed in patients who had a sinus rhythm when TTE and TEE were performed. We excluded patients with paroxysmal AF; however, some of silent paroxysmal AF may have been underdiagnosed and classified into cryptogenic stroke in our cohort. Although 24-hour electrocardiography was not performed on the study patients to exclude paroxysmal AF, this limitation seems minimal as continuous electrocardiographic monitoring was done when the patients were first admitted to the stroke unit. Third, persistent AF, which constitutes a significant portion of patients with stroke, was excluded for quality control of acquired strain images, which may have biased the study population. This provides an explanation for the small incidence of thrombus in LA or LAA (8/248) in this study. Although it may not represent general stroke patient population, our data reflect real-world practice. Given the small percentage of thrombus in LA and LAA in stroke patients with sinus rhythm in the real world, results from our study suggest noninvasive, easily applicable, alternative method for evaluation of abnormal flow stasis or thrombus in LA or LAA in patients with stroke. Our study demonstrates possible application of the global LALS in real-world practice where TEE is difficult to perform. Fourth, a total incidence of cardioembolism stroke was not low although we only included patients with sinus rhythm. Considering the possibility of underdiagnosed incidence of paroxysmal AF and the mean age of our cohort, the incidence of cardioembolism stroke (22.6%) is not unusual. In addition, cardiac conditions other than AF may have contributed to cardioembolism stroke.

Conclusions
LA mechanical dysfunction is closely associated with high risks of cardioembolism. Global LALS assessed by TTE speckle tracking methods well discriminates the presence of LA or LAA thrombus detected from TEE in patients with acute ischemic stroke. Therefore, comprehensive assessment of LA size and mechanical function can be useful for risk stratification of cardioembolism in patients with acute ischemic stroke.

Sources of Funding
This study was supported by a research fund from Korean Society of Echocardiography (2012-31-0060).

Disclosures
None.

References
10. Lang RM, Bierig M, Devereux RB, Flachkampf FA, Foster E, Pellikka PA, et al; Chamber Quantification Writing Group; American Society of Echocardiography’s Guidelines and Standards Committee; European Association of Echocardiography. Recommendations for chamber quantification a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18:1440–1463. doi: 10.1016/j.echo.2005.10.005.

Clinical Implications and Determinants of Left Atrial Mechanical Dysfunction in Patients With Stroke
Darae Kim, Chi Young Shim, Geu-Ru Hong, Mi-Hyun Kim, Jiwon Seo, In Jeong Cho, Young Dae Kim, Hyuk-Jae Chang, Jong-Won Ha, Ji Hoe Heo and Namsik Chung

Stroke. 2016;47:1444-1451; originally published online May 3, 2016;
doi: 10.1161/STROKEAHA.115.011656
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/47/6/1444

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2016/05/03/STROKEAHA.115.011656.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/
SUPPLEMENTAL MATERIAL

Supplementary material for method

Speckle tracking echocardiography

The intra-observer and inter-observer reproducibility for the assessment of global LALS were determined by the Bland-Altman analysis. Intra-observer reproducibility was determined by repeating the strain measurements at two different time points by one experienced reader in 15 randomly selected patients. A second experienced reader performed the strain analysis in the same 15 patients, providing the inter-observer data. The Bland Altman analysis and intra-class correlation coefficient (ICC) showed good intra-and inter-observer agreement for global LALS. For inter-observer agreement of global LALS, the mean difference was 1.7 (-1.3, 4.4) and the ICC was 0.88; for intra-observer agreement, the mean difference was 1.2 (-2.0, 3.1) and the ICC was 0.90.

Supplementary material for results

Clinical determinants for LA or LAA thrombus and complex aortic plaques

Multiple regression analysis was performed to determine independent clinical parameters for LA or LAA thrombus and complex aortic plaques. From multiple regression analysis, the global LALS was the only significant determinant (p<0.01) for the presence of a LA or LAA thrombus, even after adjustment for age (p=0.18) and LA volume index (p=0.53). For complex aortic plaque, age was an independent determinant of complex aortic plaque (p<0.01), but the global LALS was not. This result might be explained by a significant mechanistic association among age, increased aortic stiffness which is often combined with complex aortic plaques, and the low global LALS.
Supplementary Table I. Simple correlation analysis.

<table>
<thead>
<tr>
<th></th>
<th>LA volume index, ml/m²</th>
<th>Global LA LS, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Correlation coefficient</td>
<td>P-value</td>
</tr>
<tr>
<td>Age</td>
<td>0.304</td>
<td><0.001</td>
</tr>
<tr>
<td>Body mass index</td>
<td>-0.108</td>
<td>0.090</td>
</tr>
<tr>
<td>LV ejection fraction</td>
<td>-0.233</td>
<td><0.001</td>
</tr>
<tr>
<td>LV mass index</td>
<td>0.394</td>
<td><0.001</td>
</tr>
<tr>
<td>e’ velocity</td>
<td>-0.008</td>
<td>0.896</td>
</tr>
<tr>
<td>S’ velocity</td>
<td>-0.370</td>
<td><0.001</td>
</tr>
<tr>
<td>E/e’</td>
<td>0.255</td>
<td><0.001</td>
</tr>
<tr>
<td>Aortic wall thickness</td>
<td>0.212</td>
<td>0.001</td>
</tr>
<tr>
<td>baPWV</td>
<td>0.172</td>
<td>0.008</td>
</tr>
</tbody>
</table>

LA, left atrium; LA LS, left atrial longitudinal strain; LV, left ventricle; e’, early diastolic mitral annular; S’, systolic mitral annular; baPWV, brachial-ankle pulse wave velocity