Background and Purpose—Recent drug trials have challenged the high-density lipoprotein-cholesterol (HDL-C) antiatherosclerotic hypothesis, suggesting that total level of HDL-C may not be the best target for intervention. HDL-C subfractions may be better markers of vascular risk than total levels of HDL-C. The objective of this cross-sectional study was to investigate the relationship between HDL2-C and HDL3-C fractions and carotid intima-media thickness (cIMT) in the population-based Northern Manhattan Study.

Methods—We evaluated 988 stroke-free participants (mean age, 66±8 years; 60% women; 66% Hispanic, and 34% non-Hispanic) with available data on HDL-C subfractions using precipitation method and cIMT assessed by a high-resolution carotid ultrasound. The associations between HDL-C subfractions and cIMT were analyzed by multiple linear regression models.

Results—The mean HDL2-C was 14.8±8 mg/dL, HDL3-C 32.8±8 mg/dL, and the mean total HDL-C was 46.1±14 mg/dL. The mean cIMT was 0.90±0.08 mm. After controlling for demographics and vascular risk factors, HDL2-C and total HDL-C were inversely associated with cIMT (per 2 SDs, \(\beta = -0.017, P = 0.001 \) and \(\beta = -0.012, P = 0.03 \), respectively). The same inverse association was more pronounced among those with diabetes mellitus (per 2SDs, HDL2-C: \(\beta = -0.043, P = 0.003 \) and HDL-C: \(\beta = -0.029, P = 0.02 \)). HDL3-C was not associated with cIMT.

Conclusions—HDL2-C had greater effect on cIMT than HDL3-C in this large urban population. The effect of HDL2-C was especially pronounced among individuals with diabetes mellitus. More research is needed to determine antiatherosclerotic effects of HDL-C subfractions and their clinical relevance. (Stroke. 2016;47:1508-1513. DOI: 10.1161/STROKEAHA.115.012009.)

Key Words: atherosclerosis ■ carotid intima-media thickness ■ cholesterol, HDL ■ diabetes mellitus ■ stroke

High-density lipoprotein-cholesterol (HDL-C) is one of the most commonly measured biomarkers integrated into public health prevention guidelines. Major epidemiological studies have demonstrated strong, inverse, and independent relationships between HDL-C and cardiovascular disease (CVD) and stroke.1–3 However, several recent clinical trials have challenged the value of raising HDL-C pharmacologically and the validity of the HDL-C antiatherosclerotic hypothesis.4–6 In addition to HDL-C quantity, HDL-C quality, such as HDL-C subfractions and their function may have differential effects on atherosclerosis and CVD risk. Variability of the levels of HDL-C subfractions and their function in total HDL-C may, in part, explain unexpected results of HDL-C–based interventions.

HDL-C consists of 2 principal subfractions: larger size (8.7–12.5 nm), more buoyant (density, 1.06–1.13 g/mL) HDL2-C and smaller (<8.7 nm), less buoyant (density, 1.13–1.21 g/mL) HDL3-C.7 High-density lipoprotein subfractions

Received November 5, 2015; final revision received March 22, 2016; accepted April 12, 2016.

From the Department of Psychiatry and Behavioral Sciences, Miller School of Medicine (E.T.), Department of Neurology, Miller School of Medicine (E.T., H.G., C.D., D.D.-M., C.B.W., R.L.S., T.R.), Division of Endocrinology, Diabetes and Metabolism (B.I.H.), Diabetes Research Institute and Lipid Disorder Clinic (R.B.G.), and Department of Public Health Sciences (R.L.S.), University of Miami, FL; Department of System Medicine, University of Rome Tor Vergata, Rome, Italy (D.D.-M.); Biomarker Discovery and Advanced Technologies (BioDAT), IRCCS San Raffaele Pisana, Rome, Italy (D.D.-M.); Karolinska Institute, Department of Neurobiology, Care Sciences and Society, Stockholm, Sweden (M.C.); Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY (M.S.V.E.); Department of Biostatistics (Y.K.C.) and Department of Epidemiology (M.D.), Mailman School of Public Health, Columbia University, New York, NY; and Centre de Recherche Épidémiologie et Statistique Sorbonne Paris Cité (CRESS-UMR1153), Paris, France (M.D.).

*Drs Tiozzo and Gardener are joint first authors.

Correspondence to Eduard Tiozzo, PhD, University of Miami, Department of Psychiatry and Behavioral Sciences and Department of Neurology, 1120 NW 14th St, Miami, FL 33136. E-mail etiozzo@miami.edu

© 2016 American Heart Association, Inc.

Stroke is available at http://stroke.ahajournals.org

DOI: 10.1161/STROKEAHA.115.012009
differ in their biological activities and responses to lifestyle changes and drug therapy.\(^8\) The decreased risk of CVD associated with HDL-C has been predominantly linked to HDL2-C.\(^6,9\) However, a more protective effect of HDL3-C over HDL2-C,\(^12\) equal or equal benefits of both subfractions for CVD, has also been reported.\(^13\)

Low HDL-C has been associated with increased carotid intima-media thickness (cIMT), a marker of subclinical atherosclerosis in multiple studies.\(^16,17\) Nonetheless, this relationship has not always been consistent,\(^18,19\) suggesting that total levels of HDL-C alone may not fully explain HDL-related atherosclerotic risk. The associations of HDL-C subfractions with cIMT have been less investigated and remain inconclusive.\(^20\)

The aim of this study was to investigate the relationship between HDL2-C and HDL3-C subfractions and cIMT in a large urban and multiethnic stroke-free cohort.

Methods

Study Participants

Stroke-free participants of the Northern Manhattan Study (NOMAS), an ongoing, prospective, population-based study of stroke incidence, vascular risk factors, and cognitive decline underwent high-resolution B-mode ultrasound imaging as a part of the Oral Infections and Vascular Disease Epidemiology Study (INVEST). Details on subject ascertainment, extensive assessments, and methods used in NOMAS and INVEST are described elsewhere.\(^21,22\) Of 3298 participants in NOMAS, 1582 (47\%) had data available on HDL-C subfractions and 988 (63\%) of those participants with HDL-C subfractions had cIMT measurements. The levels of HDL subfractions were performed consecutively for 47\% of the cohort and based on the available funds. NOMAS and INVEST were approved by the Institutional Review Boards of Columbia University Medical Center and the University of Miami. All participants gave written informed consent to participate in the study.

Baseline Evaluation

Data were collected through interviews with trained research assistants in English or Spanish. Physical and neurological examinations were conducted by study neurologists. Race-ethnicity was based on self-identification through a series of questions modeled after the US Census and conforming to standard definitions outlined by Directive-15.\(^23\) Standardized questions were adapted from the Behavioral Risk Factor Surveillance System by the Centers for Disease Control on hypertension, type 2 diabetes mellitus (DM), smoking, and cardiac conditions.\(^24\) Blood pressure was measured with mercury sphygmomanometers and appropriately sized cuffs. Hypertension was defined as a blood pressure \(\geq 140/90\) mm Hg (based on the average of 2 measurements during 1 sitting), the patient’s self-reported hypertension, or use of antihypertensive medications. DM was defined by fasting glucose \(\geq 126\) mg/dL, the patient’s self-reported DM, or use of insulin or oral antidiabetic medication. Body mass index was calculated in kg/m\(^2\). Smoking was categorized as never smoking, former smoking, and current (within the past year) smoking. Mild-moderate alcohol use was defined as current drinking of \(\geq 1\) drink per month and \(\geq 2\) drinks per day. Physical activity was defined as the frequency and duration of 14 different recreational activities during the 2-week period before the interview, as described previously.\(^25\)

HDL2-C, HDL3-C, and Total HDL-C Measurements

Blood samples were drawn after an overnight fast. Plasma levels of cholesterol and triglycerides were measured using standardized enzymatic procedures with a Hitachi 705 automated spectrophotometer (Boehringer Mannheim, Mannheim, Germany). HDL-C was measured after precipitation of plasma apo B–containing lipoproteins with phosphotungstic acid. The interassay coefficient of variation in our laboratory was 3\% for HDL-C. HDL2-C and HDL3-C were determined in plasma by sequential precipitation using heparin-manganese and dextran sulfate.\(^26\) Apo B–containing lipoproteins were precipitated in the first reaction using heparin-manganese chloride at final concentrations of 1.26 mg/mL and 0.091 M, respectively. The supernatant (total HDL-C) was removed, an aliquot was saved for analysis, and dextran sulfate (mol wt 15000; Genzyme, Cambridge, MA) was added to precipitate HDL2-C, which was estimated by subtracting HDL3-C from HDL-C. After centrifugation, the supernatant (HDL3-C) was removed and analyzed for cholesterol content.

Carotid Ultrasound

High-resolution carotid B-mode ultrasound (GE LogIQ 700, 9/13-MHz linear-array transducer) was performed by trained and certified sonographers using standardized and validated scanning and reading protocols as described previously.\(^26\) Carotid IMT in all carotid segments was measured off-line using an automated computerized edge detection imaging analysis system, M’Ath (Intelligence in Medical Technologies, Inc., Paris, France) in the areas free of plaque. Plaque was defined as a focal wall thickening or protrusion in the lumen >50\% than the surrounding thickness. Carotid IMT was calculated as a composite measure of the near and the far wall of IMT in the common carotid artery, internal carotid artery, and bifurcation of both sides of the neck, and expressed as a mean of the maximum measurements of the 12 carotid sites in mm within an individual. The reliability of carotid measurements in our laboratory has been high and reported previously.\(^27\)

Statistical Analysis

The primary exposures of interest (HDL2-C, HDL3-C, and total HDL-C) were assessed as continuous variables. First, we examined these variables in relation to the demographics, anthropometrics, lifestyle, and vascular risk factors, among all participants with data available on all 3 HDL variables and cIMT (n=988) using ANOVA. Next, we examined the associations of HDL2-C, HDL3-C, and total HDL-C with cIMT (n=988) using linear regression models with cIMT as the dependent variable. We constructed 2 models; model 1 controlled for race/ethnicity, age, sex, low-density lipoprotein-cholesterol (LDL-C), triglycerides, and cholesterol-lowering medications. Model 2 was additionally controlled for body mass index, smoking, alcohol use, physical activity, hypertension, DM, and the time span from baseline to carotid ultrasound. Based on abnormalities in HDL subfraction distribution in DM, consisting of the increased prevalence of small HDL3-C and accelerated turnover and remodelling of large HDL2-C particles,\(^28\) we examined the interactions between all 3 HDL variables and DM in relation to cIMT. This exploratory analysis of potential effect modification by DM was conducted by including interaction terms in fully adjusted models, and stratified analyses were conducted as appropriate. Finally, the interaction between HDL variables and cIMT by 3 carotid segments was analyzed. All analyses of HDL2-C and HDL3-C were mutually adjusted. SAS version 9.1 (SAS Institute, Cary, NC) was used for statistical analysis, and \(P<0.05\) was considered significant.

Results

The mean age of the study population (n=988) was 66±8 years; 60\% were women, 66\% Hispanic, and 34\% non-Hispanic. The prevalence of smoking was 15\%, DM was 21\%, and hypertension was 72\%. Mean LDL-C was 129.4±34.10, mean triglycerides was 130.39±65.85, and 15\% of the population were taking cholesterol-lowering medication. The mean values of total HDL-C, HDL2-C, and HDL3-C by demographics and vascular risk factors are presented in Table 1. The mean HDL2-C was 14±8 mg/dL, HDL3-C 32±8 mg/dL, and the
mean total HDL-C was 46±14 mg/dL. The mean total HDL-C was similar in the NOMAS participants with carotid ultrasound measurements but without available HDL subfractions (n=806; 47 mg/dL), suggesting unbiased selection of our sub-cohort sample. The mean cIMT in the sample was 0.90±0.08 mm (common carotid artery, 0.92±0.10 mm; internal carotid artery, 0.84±0.09 mm; bifurcation, 0.94±0.10 mm). A strong positive correlation was observed for total HDL-C with HDL2-C ($r=0.81; P<0.01$) and for total HDL-C with HDL3-C ($r=0.75; P<0.01$), whereas a weaker positive correlation was observed between HDL2 and HDL3 ($r=0.34; P<0.01$).

Table 1 shows the association between the HDL variables and cIMT. After controlling for demographic and vascular risk factors including LDL-C and triglyceride, HDL2-C, and total HDL-C were inversely and significantly associated with cIMT ($P=0.001$ and $P=0.03$, respectively). HDL3-C levels were not statistically significant associated with cIMT after full adjustment ($P=0.81$).

We checked and found no significant interaction between traditional risk factors (sex, age, race/ethnicity, body mass index, DM, hypertension, alcohol, smoking, and physical activity) and HDL-C variables in relation to cIMT. Suggested interactions were found only between DM and HDL2-C ($P=0.07$) and between DM and total HDL-C ($P=0.07$). Stratified analyses by DM status showed that the inverse associations for total HDL-C and HDL2-C subfraction with cIMT were stronger among participants with DM (Table 3).

Table 4 shows the association between HDL subfractions and cIMT by different carotid segments. Suggested interactions were observed in all carotid segments for HDL2-C, intima carotid artery and bifurcation for HDL-C, and no carotid segments for HDL3.
individuals from an urban multiethnic stroke-free cohort.
These associations were stronger among participants with DM. No significant association was observed between HDL3-C and cIMT after adjusting for vascular risk factors. Our findings are similar to a small clinical trial involving 21 healthy middle-aged individuals,28 where HDL2 was inversely related to carotid IMT. The same study, however, concluded that HDL subfractions may be more closely related to cIMT than to total HDL-C. Our results suggest similar association between HDL2-C and total HDL-C with cIMT. In a sample of Japanese American people who were not using cholesterol- and glucose-lowering medications, but including individuals with dyslipidemia and type 2 DM, no significant association was found between total HDL-C and both HDL-C subfractions with cIMT. In a Finnish study29 a significant association with cIMT was limited only to HDL-C, among asymptomatic members of low HDL-C families. According to the same study, total HDL-C was a more critical predictor for cIMT than other lipid variables, including HDL2-C and HDL3-C. The results of Multi-Ethnic study of Atherosclerosis (MESA) suggested the absence of an inverse association of HDL-C with cIMT or CVD, after adjusting for LDL and HDL particles, thus identifying complex intersecting functions and atheroprotective mechanisms within HDL structure.19 The inconsistency of study findings could be explained by the differences in health status of study populations, such as the absence or presence of type 2 DM and whether the condition is treated. Type 2 DM reduces the levels of total HDL-C and HDL2-C subfraction and increases both relatively or absolutely HDL3 subfraction.30 Our participants with type 2 DM had lower levels of total HDL-C and both HDL2-subfractions than those without type 2 DM.

Our findings suggest the potential protective role of the HDL2-C subfraction for subclinical atherosclerosis among those with DM. In proatherosclerotic and proinflammatory conditions, HDL2-C has been inversely associated with cardiometabolic risk factors such as homeostatic model assessment, fasting glucose, and C-reactive protein.20,31 This can be explained by impaired efflux of cellular cholesterol in DM. A universal shift from HDL2-C toward HDL3-C and consequently a change in reverse cholesterol transport has been reported in DM.32 This conversion is facilitated by key factors in the HDL remodeling process whereby suppressed lecithin-cholesterol acyltransferase and enhanced hepatic lipase and cholesteryl ester transfer protein (CETP) can impair maturation of HDL3-C into HDL2-C or enhance production of HDL3. Even elevated levels of HDL3-C from type 2 diabetics can display significantly reduced antioxidative capacity, linked to oxidative stress, glyceria and hypertyrgercidemia.33 The relative levels of HDL2-C (30%) and HDL3-C (70%) of total HDL-C were similar among individuals with and without DM in our study. The HDL2-C is the more variable subfraction and

<table>
<thead>
<tr>
<th>IMT Change per 2 SDs</th>
<th>β, SE (n=988)</th>
<th>P Value</th>
<th>Interaction P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDL2-C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetics</td>
<td>−0.043, 0.014</td>
<td>0.003</td>
<td>0.07</td>
</tr>
<tr>
<td>Nondiabetics</td>
<td>−0.012, 0.006</td>
<td>0.04</td>
<td>…</td>
</tr>
<tr>
<td>HDL3-C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetics</td>
<td>0.009, 0.014</td>
<td>0.52</td>
<td>1.00</td>
</tr>
<tr>
<td>Nondiabetics</td>
<td>0.002, 0.006</td>
<td>0.81</td>
<td>…</td>
</tr>
<tr>
<td>HDL-C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetics</td>
<td>−0.029, 0.012</td>
<td>0.02</td>
<td>0.07</td>
</tr>
<tr>
<td>Nondiabetics</td>
<td>−0.008, 0.006</td>
<td>0.24</td>
<td>…</td>
</tr>
</tbody>
</table>

Linear regression model: fully adjusted for race/ethnicity, age, sex, low-density lipoprotein-cholesterol, triglycerides, and cholesterol medication use, body mass index, smoking, alcohol, physical activity, hypertension, and time from baseline to carotid ultrasound. HDL-C indicates high-density lipoprotein-cholesterol; and IMT, intima-media thickness.

| IMT Change per 2 SDs | CCA | | | ICA | | | Bifurcation | |
|----------------------|-----|-----|-----|-----|-----|-----|
| | β, SE | P Value | β, SE | P Value | β, SE | P Value |
| HDL2-C | | | | | | |
| Model 1 | −0.012, 0.007 | 0.08 | −0.011, 0.006 | 0.07 | −0.014, 0.007 | 0.05 |
| Model 2 | −0.014, 0.007 | 0.03 | −0.014, 0.006 | 0.03 | −0.022, 0.007 | 0.001 |
| HDL3-C | | | | | | |
| Model 1 | −0.015, 0.007 | 0.03 | −0.010, 0.006 | 0.13 | −0.008, 0.008 | 0.27 |
| Model 2 | −0.001, 0.007 | 0.85 | −0.002, 0.007 | 0.74 | 0.006, 0.007 | 0.41 |
| HDL-C | | | | | | |
| Model 1 | −0.014, 0.007 | 0.05 | −0.015, 0.006 | 0.02 | −0.016, 0.008 | 0.04 |
| Model 2 | −0.006, 0.007 | 0.27 | −0.013, 0.007 | 0.04 | −0.015, 0.007 | 0.04 |

Linear regression model: model 1: adjusted for race/ethnicity, age, sex, low-density lipoprotein-cholesterol, triglycerides, and cholesterol medication use; model 2: adjusted for model 1 and body mass index, smoking, alcohol, physical activity, hypertension, diabetes mellitus, and time from baseline to carotid ultrasound. CCA indicates common carotid artery; HDL-C, high-density lipoprotein-cholesterol; ICA, intima carotid artery; and IMT, intima-media thickness.
more protective of atherosclerosis through its role in efflux of cellular cholesterol, stimulated by ATP-binding cassette transporter. Similar ratio of HDL2-C/HDL3-C in our study suggests that the inverse association between HDL2-C and cIMT that was present among individuals with DM may be more related to altered HDL2-C quality, rather than to HDL-C quantity. Because our work has not assessed functionality of the HDL-C subfractions, no further explanation about the inverse association between HDL2-C and cIMT can emerge from this work.

Reverse cholesterol transport is considered one of the most important antiatherogenic functions of total HDL-C. Because the level of plasma HDL-C alone does not reliably predict the degree of reverse cholesterol transport, the atherogenic quality may be better defined by HDL-C subfractions and their functionality. A causal relationship between circulating HDL-C levels and risk of atherosclerosis and CVD remains uncertain despite strong evidence for this association from observational studies. In MESA, total HDL-C alone did not fully explain HDL-C–related risk. Similarly, raising HDL-C with medications in several recent pharmacotherapeutic interventional trials did not uniformly translate into lower risk of CVD events or atherosclerosis. Dysfunctional and proinflammatory HDL-C, even after adjusting for quantitative HDL-C levels, was associated with cIMT in South Asian immigrants in the United States. All these findings indicate the need for further evaluation of HDL quality, such as HDL-C subfractions, or even more specific measures of HDL-C function.

In our previous work, we observed an inverse association between HDL3-C and carotid plaque. Formation of carotid plaque is highly related to inflammation, endothelial dysfunction, and smooth muscle cell proliferation. The same atherogenic mechanisms have been targeted by HDL3-C particles via inhibition of vascular cell adhesion molecule-1 expression and LDL-C oxidation associated with higher paroxysmal oxidative activity. Carotid IMT, however, may be distinct from plaque in the biological and pathophysiologic effects on CVD, and it is not necessarily an intermediate lesion between normal wall structure and atherosclerotic plaque development as recently reported in the NOMAS. Intima-media thickness, unlike carotid plaque, is more associated with hypertensive medial hypertrophy or thickening of smooth muscle cells although it is not only a lesion represented by smooth muscle cell proliferation. It also represents a large part of the complex, depending on genetics, age, and modifiable risk factors. Our data support distinct atheroprotective properties of HDL-C subfractions in relation to carotid plaque and cIMT. Higher HDL2-C levels seem to be more atheroprotective for cIMT and HDL3-C for carotid plaque in our population.

Current cholesterol-lowering therapeutic goals target total HDL-C without specific recommendations for HDL-C components. More research is needed to determine whether the levels of HDL-C subfractions are clinically relevant beyond the levels of total HDL-C.

Strengths of the current study include the use of a large population, with available information on systematically collected and standardized measurements of vascular risk factors. Furthermore, our research contributes to knowledge of the role of HDL-C subfractions in subclinical atherosclerosis, a relatively understudied area in CVD. Our study also has several limitations, most notably its cross-sectional design, limiting inferences about temporality and causality. We also lacked information on changes over time in total HDL-C and its subfractions, especially in relation to changes in carotid IMT. Finally, we assessed the plasma levels of HDL-C subfractions without their biological activity and subclasses (eg, HDL2a and HDL2b).

Conclusions

HDL-C subfractions may have distinct protective biological role against atherosclerosis, particularly in the presence of DM. Additional studies are needed to determine more conclusively the role of HDL2-C and HDL3-C subfractions and their functionality in atherosclerosis among individuals with different metabolic and CVD profiles.

Sources of Funding

This work was supported by National Institutes of Health grants R01 NS 29993 (Dr Sacco) and DE 13094 (Dr Desvarieux), K24 NS 062737 (Dr Rundek), and K02 NS 059729 (Dr Wright).

Disclosures

Dr Elkind received revenue from Senofi-Regeneron regarding PCSK9 inhibitors and from UptoDate for a chapter on cryptogenic stroke. Dr Elkind is a board member of the American Heart Association. Dr Desvarieux is the Chair of Excellence for the Institut National de la Santé et de la Recherche Médicale (INSERM). The other authors report no conflicts.

References

Subfractions of High-Density Lipoprotein-Cholesterol and Carotid Intima-Media Thickness: The Northern Manhattan Study
Eduard Tiozzo, Hannah Gardener, Barry I. Hudson, Chuanhui Dong, David Della-Morte, Milita Crisby, Ronald B. Goldberg, Mitchell S.V. Elkind, Ying Kuen Cheung, Clinton B. Wright, Ralph L. Sacco, Moise Desvarieux and Tatjana Rundek

Stroke. 2016;47:1508-1513; originally published online May 10, 2016;
doi: 10.1161/STROKEAHA.115.012009
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/47/6/1508