Carotid Atherosclerotic Plaque Characteristics on Magnetic Resonance Imaging Relate With History of Stroke and Coronary Heart Disease

Mariana Selwaness, MD, PhD; Daniel Bos, MD, PhD; Quirijn van den Bouwhuijsen, MD; Marileen L.P. Portegies, MD; M. Arfan Ikram, MD, PhD; Albert Hofman, MD, PhD; Oscar H. Franco, MD, PhD; Aad van der Lugt, MD, PhD; Jolanda J. Wentzel, PhD; Meike W. Vernooij, MD, PhD

Background and Purpose—Because atherosclerosis is a systemic disease, presence and composition on 1 location may relate to ischemic events in distant locations. We examined whether carotid atherosclerotic wall thickness, stenosis, and plaque composition are related to history of ischemic stroke and coronary heart disease (CHD).

Methods—From the population-based Rotterdam Study, 1731 asymptomatic participants (mean age, 72.4±9.1 years; 55% males) underwent magnetic resonance imaging of both carotid arteries. We assessed carotid wall thickness, stenosis and plaque composition, that is presence of intraplaque hemorrhage, lipid, and calcification. History of ischemic stroke and CHD was assessed until date of magnetic resonance imaging. The study was approved by the institutional review board, and all participants gave informed consent. Logistic regression analyses adjusted for age and traditional cardiovascular risk factors were used to study sex-specific associations between plaque characteristics and clinical events.

Results—We found that both carotid stenosis and intraplaque hemorrhage were associated with ischemic stroke in men but not in women (men: odds ratio [OR] for stenosis [per 10% increase]: 1.17 [95% CI, 1.06–1.30] and for intraplaque hemorrhage 2.39 [95% CI, 1.32–4.35]). In both men and women, carotid stenosis was associated with CHD (men: OR per 10% increase 1.12 [95% CI, 1.04–1.21] and women: OR, 1.17 [95% CI, 1.03–1.34]) and carotid wall thickness was associated with CHD (men: OR, 1.20 [95% CI, 1.03–1.39] and women: OR, 1.21 [95% CI, 0.88–1.65]). None of the plaque components was associated with CHD.

Conclusions—Whereas carotid plaque thickness and stenosis are associated with the history of ischemic stroke and CHD, carotid intraplaque hemorrhage is associated with ischemic stroke, but not with CHD, providing novel insights into the pathogenesis of cardiovascular events. (Stroke. 2016;47:1542-1547. DOI: 10.1161/STROKEAHA.116.012923.)

Key Words: atherosclerosis ■ cardiovascular disease ■ carotid stenosis ■ magnetic resonance imaging ■ stroke

Atherosclerosis is the primary cause of cardiovascular disease, with coronary heart disease (CHD) and ischemic stroke as its most important clinical manifestations. Atherosclerosis is clinically silent for years with gradual thickening of the vessel wall and changes in plaque composition. Previous data suggest that plaque vulnerability depends on its composition, rather than on its thickness or the severity of stenosis. One of the vessel beds most extensively studied in atherosclerosis is the carotid artery because it can be easily visualized using different imaging techniques. Whereas ultrasound was for long the main modality for assessing carotid wall thickness, technical advances in other imaging modalities, especially magnetic resonance imaging (MRI), now allow a better characterization of plaque composition. Plaque components that can reliably be characterized on MRI are lipid deposits with or without a necrotic core, calcification, and intraplaque hemorrhage (IPH). Among these, IPH has gained much attention because it has been recognized as an important determinant of plaque instability and subsequent risk of stroke.

An important feature of atherosclerosis is that it is a systemic vascular disease and that the presence of atherosclerotic disease at one specific location may predict ischemic events in distant locations. In this context, intima media thickness (IMT) in the carotid arteries has previously been used to assess the risk of CHD. Also, specific properties of carotid...
plaques, such as irregularity of the plaque surface, were found to be associated with atherosclerotic plaque irregularity in other vessel beds. Subsequently, it was postulated that systemic risk factors might lead to a systemic predisposition to irregularity and rupture of atherosclerotic plaques. Such a predisposition to plaque instability attributable to systemic risk factors would suggest that plaque composition and instability in the carotid arteries could be related not only to stroke but also to other events, such as CHD. Therefore, in this study, we investigated the association of extent of carotid atherosclerosis and carotid plaque composition with a history of ischemic stroke and CHD in a population-based cohort study.

Methods

Study Population

The subjects of this study are participants of the Rotterdam Study, a prospective population-based cohort study initiated in 1990 among persons 55 years and older in the municipality of Rotterdam, the Netherlands. The original cohort of the Rotterdam Study was expanded in 2000, and again in 2006 to include participants who were 45 years and older. All study participants routinely undergo carotid ultrasonography to assess carotid IMT (measured as maximum distance between the near and far wall). Of 10073 participants with carotid ultrasound, 3795 participants (38%) had wall thickness ≥2.5 mm in at least one carotid, which was the inclusion criterion for participating in the current carotid MRI study. From the 3795 with wall thickening we invited 2666 participants to undergo an MRI of the carotid arteries. The remaining 1129 participants had passed away, moved out of the study area, were physically disabled (n=70), or had no information on carotid arteries. Scans were excluded if image quality was bad (n=95), if no plaque ≥2 mm were observed bilaterally (n=41) or if scanning was interrupted due to claustrophobia (n=106). The remaining 1739 participants with carotid MRI scans, we excluded participants with incomplete information on prevalence of CHD (n=8) or stroke (n=48). The Rotterdam Study has been approved by the medical ethics committee according to the International Classification of Diseases, 10th Revision. Consent was obtained from all participants.

Carotid MRI Scanning and Analysis of Plaque Characteristics

Imaging was performed with a 1.5-Tesla scanner (GE Healthcare, Milwaukee, WI) with a bilateral phased-array surface coil (Machnet, Eelde, The Netherlands). A standard scanning protocol was used with a total scanning time of ≈30 minutes. The carotid MRI protocol, read-
do not undergo MRI scanning, because of claustrophobia (n=57), physical restrictions (n=191), contraindications (n=115), refusal to participate (n=272), no show or lost to follow-up (n=49). The remaining 1982 participants (74% of those initially invited) underwent MRI scanning of both carotid arteries. Scans were excluded if image quality was bad (n=95), if no plaque ≥2 mm were observed bilaterally (n=41) or if scanning was interrupted due to claustrophobia (n=106). Of the remaining 1739 participants with carotid MRI scans, we excluded participants with incomplete information on prevalence of CHD (n=8) or stroke (n=48). The Rotterdam Study has been approved by the medical ethics committee according to the Population Study Act Rotterdam Study, executed by the Ministry of Health, Welfare and Sports of the Netherlands. A written informed consent was obtained from all participants.

Assessment of Covariates

Information on cardiovascular risk factors was obtained from the visit to the research center, which took place before the MRI scanning. Smoking status was classified as ever or never. Serum total cholesterol and high-density lipoprotein-cholesterol values were measured using standard laboratory techniques. On the basis of weight and height, the body mass index was calculated. Diabetes mellitus was defined as a fasting blood glucose >7.0 mmol/L, non-fasting glucose >11.0 mmol/L, or use of antidiabetic medication. Blood pressure was measured using a random-zero sphygmomanometer at the study center visit. Hypertension was defined as a blood pressure >140/90 mmHg or the use of antihypertensive medication. Medication dispensing data were obtained from the fully computerized pharmacies in the Ommoord suburb. Information on all filled prescriptions of antihypertensive drugs on date of carotid MRI scans was available.

Statistical Analysis

We compared the baseline characteristics between men and women using age-adjusted linear regression for continuous variables and logistic regression for dichotomous variables. We also examined the mean wall thickness and degree of stenosis in persons with and without IPH, lipid core, and calcification (Table I in the online-only Data Supplement).

To investigate the relation of the different plaque characteristics (IPH, lipid, calcification, stenosis [per 10%], and carotid wall thickness) with the history of ischemic stroke and CHD, we used binomial logistic regression. Next, we analyzed these relations in the whole sample and for men and women separately. In the first model, analyses were adjusted for age, sex (in the overall model only), and carotid wall thickness (only for the analyses with IPH, lipid, and calcification as determinant). In the second models, we additionally adjusted the associations for cardiovascular risk factors (smoking, total cholesterol, high-density lipoprotein-cholesterol, body mass index, diabetes mellitus, and hypertension).

We also evaluated effect modification by sex. Finally, we performed additional analyses in which all plaque characteristics were further adjusted for the other plaque components (Tables I and II in the online-only Data Supplement).

All analyses were carried out using SPSS Statistical Package version 20.0 (Chicago, IL). Missing values in the covariates were imputed using the Expectation Maximization method.
Results

Table 1 reports the characteristics for the 1731 participants. The population consisted of 936 men (55%; mean age, 72.3±9.0 years) and 795 women (46%; mean age, 73.6±9.3 years). Men had lower total cholesterol values, lower high-density lipoprotein-cholesterol, higher prevalence of smoking, diabetes mellitus, and diastolic blood pressure. The mean carotid wall thickness was 3.6 mm (±1.1) and mean degree of stenosis was 13.1% (±18). IPH was prevalent in 35%, lipid in 41%, and calcification in 82%. Information on carotid plaque characteristics and history of CHD was available for 1731 participants and for history of stroke in 1683 participants. Before the carotid MRI scanning, a total of 105 individuals (61 men [6.5%] versus 44 women [5.5%]) experienced an ischemic stroke and 199 individuals (164 men [15.6%] versus 53 women [6.7%]) experienced a CHD event.

Table 2 presents overall and sex-specific associations between plaque characteristics and history of ischemic stroke, adjusted for age, carotid wall thickness (model 1), and for cardiovascular risk factors (model 2). In the multivariable model (model 2), only carotid stenosis was significantly associated with stroke (odds ratio [OR] per 10% increase in stenosis 1.14 [95% CI, 1.05–1.24]). However, after we stratified for sex, we found a strong association for IPH and carotid stenosis with stroke in men but not in women (OR for IPH: men: 2.39 [95% CI, 1.21–4.35], women: 0.69 [95% CI, 0.33–1.46]. OR for stenosis per 10% increase 1.17 [95% CI, 1.06–1.30], women: 1.10 [95% CI, 0.95–1.28]). When we tested for effect modification by sex, we only found the interaction term with IPH to be significant (P=0.03). Lipid, calcification, and carotid wall thickness were not associated with stroke in the fully adjusted model.

Table 3 shows overall and sex-specific associations between plaque characteristics and history of CHD, adjusted for age, carotid wall thickness (model 1), and for cardiovascular risk factors (model 2). In the overall analysis, only carotid stenosis was significantly associated with CHD after adjustment for cardiovascular risk factors (OR per 10% increase 1.14 [95% CI, 1.06–1.22]). Stratifying for sex did not materially change this association in both men and women. Also, carotid wall thickness was significantly associated with CHD in men (OR, 1.20 [95% CI, 1.03–1.39]) but not in women (OR, 1.21 [95% CI, 0.88–1.65]). For carotid stenosis and wall thickness, no effect modification by sex was observed (data not shown).

None of the various plaque components was associated with the history of CHD, also after stratification for sex. All analyses for the association between plaque characteristics and stroke and CHD were repeated with additional adjustment for the remaining plaque components, but this did not alter the results (Tables II and III in the online-only Data Supplement).

Discussion

In this population-based study, we found carotid atherosclerotic plaque characteristics to be differentially related to history of ischemic stroke and CHD. Whereas the extent of atherosclerosis, expressed as plaque thickness or stenosis, was associated both with the history of ischemic stroke and CHD, plaque composition, and specifically IPH, seemed to be associated with the history of stroke only. These associations were primarily present in men and less prominent in women.

The relation between carotid IMT as measured with B-mode ultrasound and cardiovascular disease has been well established and IMT serves as a marker of generalized atherosclerosis.28,29 To this extent, IMT has been increasingly used for risk stratification models and contributes greatly to the prediction of CHD.10,22 To our knowledge, no studies have mainly focused on the relation between carotid plaque composition as detected with MRI and CHD. Most imaging studies used ultrasound measurements, because these measurements are relatively simple and noninvasive, but the resolution is of limited value for characterization of plaque composition.33 By using MRI, we found that carotid wall thickness and stenosis are more associated with a history of CHD than any of the specific carotid plaque components.

We found a prominent association of stenosis and IPH with history of stroke, which is in line with several clinical studies that investigated carotid plaque composition and neurological ischemic events.23,24–26 In a meta-analysis among 394 asymptomatic subjects, it was found that especially IPH was related to a substantially increased risk of stroke (hazard ratio, 3.5).2 However, because atherosclerosis is a chronic inflammatory condition with various local and systemic manifestations,27 researchers have raised the hypothesis that plaque instability may also be a systemic condition, influenced by systemic risk factors.28,29 For this reason, the term vulnerable patient was introduced, indicating that changes found in 1 vessel bed may be predictive of risk of events in another vessel bed.6,12 Whereas several reports previously suggested
Table 2. Atherosclerotic Plaque Characteristics and History of Ischemic Stroke

<table>
<thead>
<tr>
<th></th>
<th>Overall</th>
<th>Model 1</th>
<th>Women</th>
<th>Model 2</th>
<th>Model 1</th>
<th>Men</th>
<th>Model 2</th>
<th>Model 1</th>
<th>Women</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR (95% CI)</td>
<td>P Value</td>
</tr>
<tr>
<td>IPH</td>
<td>1.61 (1.04–2.50)</td>
<td>0.03</td>
<td>1.47 (0.94–2.30)</td>
<td>0.09</td>
<td>2.54 (1.41–4.57)</td>
<td>0.002</td>
<td>2.39 (1.32–4.35)</td>
<td>0.04</td>
<td>0.82 (0.39–1.71)</td>
<td>0.6</td>
</tr>
<tr>
<td>Lipid</td>
<td>0.85 (0.57–1.29)</td>
<td>0.4</td>
<td>0.91 (0.66–1.39)</td>
<td>0.7</td>
<td>0.82 (0.48–1.39)</td>
<td>0.4</td>
<td>0.83 (0.48–1.44)</td>
<td>0.5</td>
<td>0.93 (0.49–1.79)</td>
<td>0.8</td>
</tr>
<tr>
<td>Calcification</td>
<td>1.45 (0.77–2.72)</td>
<td>0.2</td>
<td>1.32 (0.70–2.50)</td>
<td>0.4</td>
<td>1.40 (0.61–3.19)</td>
<td>0.4</td>
<td>1.29 (0.56–3.00)</td>
<td>0.5</td>
<td>1.53 (0.58–4.06)</td>
<td>0.4</td>
</tr>
<tr>
<td>Stenosis*</td>
<td>1.17 (1.08–1.26)</td>
<td><0.001</td>
<td>1.14 (1.05–1.24)</td>
<td>0.002</td>
<td>1.18 (1.08–1.30)</td>
<td>0.001</td>
<td>1.17 (1.06–1.30)</td>
<td>0.02</td>
<td>1.13 (0.98–1.30)</td>
<td>0.1</td>
</tr>
<tr>
<td>Wall thickness</td>
<td>1.22 (1.04–1.43)</td>
<td>0.02</td>
<td>1.17 (0.99–1.38)</td>
<td>0.07</td>
<td>1.24 (1.03–1.48)</td>
<td>0.02</td>
<td>1.18 (0.98–1.43)</td>
<td>0.09</td>
<td>1.17 (0.84–1.65)</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Model 1: adjusted for sex (only in overall model), age, and carotid wall thickness (except for carotid wall thickness and stenosis that were only adjusted for sex and age). Model 2: as model 1, and additionally for smoking, total cholesterol, high-density lipoprotein-cholesterol, body mass index, diabetes mellitus, and hypertension. CI indicates confidence interval; IPH, intraplaque hemorrhage; and OR, odds ratio.

*Per 10% increase.

With respect to clinical events, we found that carotid atherosclerotic plaque characteristics differed between men and women. These differences could, in part, be explained by the smaller number of CHD events in women, leading to a lack in statistical power, as the estimates for the association between plaque thickness and stenosis and CHD were similar in women as in men. Alternatively, the larger OR of the association between IPH and history of stroke that we observed in men as opposed to women is in line with the male predominance of IPH as observed in several other studies.16,32,35,36 In a recent study of symptomatic patients who underwent carotid endarterectomy, IPH seemed to be associated with an increased risk of stroke and cardiovascular events in men, but not in women.32 A possible explanation relates more efficient repair, as stable, more fibrous less inflammatory, plaques were found in women, especially asymptomatic women, compared with men in histology studies.36 It was also suggested that although women may have similar amount of atherosclerosis, they may differ in clinical presentation of CHD or stroke because of estrogen- or genetic-related reasons.37

Several strengths and limitations of our study need to be addressed. The advantages of this study are the population-based design and the large sample size. Furthermore, we focused on history of stroke and CHD separately instead of restricting the study to 1 end organ or using composite end...
points. We used prevalent cardiovascular events in which symptoms of ischemia were clinically confirmed or treated. Although linkage with data from general practitioners ensured validation of the majority of the diagnoses, events that occurred before entering the Rotterdam Study were based on self-report and may, therefore, be less reliable. An important issue to consider with respect to our findings is that we specifically investigated the relation of plaque characteristics with prevalent stroke and CHD. As a consequence, we cannot infer any temporality between the determinants and the outcomes. Moreover, fatal events, in which advanced atherosclerosis is expected, were not considered in this study. This may have led to an underestimation of the association between vulnerable plaque characteristics and clinical events. In addition, lifestyle changes or medication use initiated after primary stroke or CHD may have affected atherosclerotic plaque development. This could have stabilized the atherosclerotic plaque and reduced the differences in plaque characteristics between individuals with and without a history of clinical event. However, we cannot exclude that the plaque has evolved after experiencing stroke or CHD. These considerations highlight the need for prospective studies that investigate the relation between carotid plaque characteristics and incident stroke and CHD, and determine the incremental value of carotid MRI parameters beyond the traditional cardiovascular risk factor included in, for example, the Framingham risk score.

In summary, we found that carotid plaque thickness and stenosis are associated with a history of ischemic stroke and CHD, whereas carotid IPH is only associated with a history of ischemic stroke, and not with CHD. Future studies should focus on investigating whether there is a role for carotid MRI in risk prediction and risk stratification of ischemic stroke and CHD.

Acknowledgments

The dedication, commitment, and contribution of investigators, general practitioners, and pharmacists of the Ommoord district to the Rotterdam Study are gratefully acknowledged.

Sources of Funding

The Rotterdam Study is supported by the Erasmus MC and Erasmus University Rotterdam; the Netherlands Organisation for Scientific Research (NWO); the Netherlands Organisation for Health Research and Development (ZonMW); the Research Institute for Diseases in the Elderly; the Netherlands Genomics Initiative; the Municipality of Rotterdam. This study was supported by the Welfare and Sports; the European Commission (DG XII); and the Netherlands Organisation for Health Research and Development (ZonMW). The Rotterdam Study is supported by the Erasmus MC and the Municipality of Rotterdam. This study was supported by the Welfare and Sports; the European Commission (DG XII); and the Netherlands Genomics Initiative; the Municipality of Rotterdam. The Rotterdam Study are gratefully acknowledged.

Disclosures

None.

References

Carotid Atherosclerotic Plaque Characteristics on Magnetic Resonance Imaging Relate With History of Stroke and Coronary Heart Disease

Mariana Selwaness, Daniel Bos, Quirijn van den Bouwhuijsen, Marileen L.P. Portegies, M. Arfan Ikram, Albert Hofman, Oscar H. Franco, Aad van der Lugt, Jolanda J. Wentzel and Meike W. Vernooij

Stroke. 2016;47:1542-1547; originally published online May 10, 2016;
doi: 10.1161/STROKEAHA.116.012923
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/47/6/1542

An erratum has been published regarding this article. Please see the attached page for:
/content/47/7/e201.full.pdf

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2016/05/10/STROKEAHA.116.012923.DC1
http://stroke.ahajournals.org/content/suppl/2017/07/10/STROKEAHA.116.012923.DC2

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/
In the article by Selwaness et al (Selwaness M, Bos D, van den Bouwhuijsen Q, Portegies MLP, Ikram MA, Hofman A, Franco OH, van der Lugt A, Wentzel JJ, Vernooij MW. Carotid atherosclerotic plaque characteristics on magnetic resonance imaging relate with history of stroke and coronary heart disease. *Stroke*. 2016;47:1542–1547. DOI: 10.1161/STROKEAHA.116.012923.), which published online on May 10, 2016, and appeared in the June 2016 issue of the journal, a correction was needed.

On page 1545, Table 2, column Women Model 1 P value, row Wall thickness, “0.04,” has been changed to read “0.4.”

This correction has been made to the online version of the article, which is available at http://stroke.ahajournals.org/content/47/6/1542.
SUPPLEMENTAL MATERIAL
Supplemental table I. Mean wall thickness and degree of stenosis in persons with and without IPH, lipid core and calcification.

<table>
<thead>
<tr>
<th></th>
<th>Wall thickness</th>
<th>Degree of stenosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (SD)</td>
<td>Mean (SD)</td>
</tr>
<tr>
<td>IPH present</td>
<td>4.1 (1.2)</td>
<td>28.0 (24.7)</td>
</tr>
<tr>
<td>IPH absent</td>
<td>3.2 (0.8)</td>
<td>13.6 (15.0)</td>
</tr>
<tr>
<td>Lipid core present</td>
<td>3.8 (1.1)</td>
<td>22.8 (21.9)</td>
</tr>
<tr>
<td>Lipid core absent</td>
<td>3.4 (0.9)</td>
<td>15.2 (18.0)</td>
</tr>
<tr>
<td>Calcification present</td>
<td>3.6 (1.0)</td>
<td>19.8 (20.7)</td>
</tr>
<tr>
<td>Calcification absent</td>
<td>3.2 (0.9)</td>
<td>12.7 (16.2)</td>
</tr>
</tbody>
</table>

SD: standard deviation, IPH: intraplaque hemorrhage
Supplemental table II. Atherosclerotic plaque characteristics and history of ischemic stroke, adjusted for other plaque components

<table>
<thead>
<tr>
<th></th>
<th>Overall</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 1</td>
<td>Model 2</td>
<td>Model 1</td>
</tr>
<tr>
<td>OR (95%CI)</td>
<td>P</td>
<td>OR (95%CI)</td>
<td>P</td>
</tr>
<tr>
<td>IPH</td>
<td>1.61 (1.03;2.51)</td>
<td>1.45 (0.92;2.27)</td>
<td>2.60 (1.43;4.73)</td>
</tr>
<tr>
<td>Lipid</td>
<td>0.83 (0.55;1.25)</td>
<td>0.4 (0.57;1.33)</td>
<td>0.74 (0.43;1.27)</td>
</tr>
<tr>
<td>Calcification</td>
<td>1.22 (0.71;2.52)</td>
<td>0.4 (0.64;2.34)</td>
<td>1.20 (0.52;2.70)</td>
</tr>
<tr>
<td>Stenosis*</td>
<td>1.14 (1.05;1.24)</td>
<td>0.003 (1.03;1.22)</td>
<td>1.13 (1.02;1.25)</td>
</tr>
<tr>
<td>Wall thickness</td>
<td>1.25 (0.97;1.38)</td>
<td>0.1 (0.92;1.31)</td>
<td>1.11 (0.90;1.36)</td>
</tr>
</tbody>
</table>

IPH: intraplaque hemorrhage, OR: odds ratio, CI: confidence interval

Model 1: adjusted for sex (only in overall model), age and carotid wall thickness (except for carotid wall thickness and stenosis which were only adjusted for sex and age).

Model 2: as model 1, and additionally for smoking, total cholesterol, HDL-cholesterol, BMI, diabetes mellitus and hypertension.

* per 10% increase
Supplemental table III. Atherosclerotic plaque characteristics and history of CHD, adjusted for other plaque components

<table>
<thead>
<tr>
<th></th>
<th>Overall</th>
<th></th>
<th>Men</th>
<th></th>
<th>Women</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 1</td>
<td></td>
<td>Model 2</td>
<td></td>
<td>Model 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td>P</td>
<td>OR</td>
<td>P</td>
<td>OR</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>(95%CI)</td>
<td>(95%CI)</td>
<td>(95%CI)</td>
<td>(95%CI)</td>
<td>(95%CI)</td>
<td>(95%CI)</td>
</tr>
<tr>
<td>IPH</td>
<td>1.13</td>
<td>0.5</td>
<td>1.04</td>
<td>0.8</td>
<td>0.87</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>(0.80;1.59)</td>
<td>(0.73;1.48)</td>
<td>(0.73;1.37)</td>
<td>(0.64;1.34)</td>
<td>(0.57;1.31)</td>
<td>(0.54;1.26)</td>
</tr>
<tr>
<td>Lipid</td>
<td>0.95</td>
<td>0.8</td>
<td>0.99</td>
<td>0.9</td>
<td>0.92</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>(0.70;1.30)</td>
<td>(0.71;1.37)</td>
<td>(0.70;1.89)</td>
<td>(0.64;1.34)</td>
<td>(0.64;1.34)</td>
<td>(0.67;1.47)</td>
</tr>
<tr>
<td>Calcification</td>
<td>1.19</td>
<td>0.5</td>
<td>1.15</td>
<td>0.6</td>
<td>0.99</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>(0.73;1.93)</td>
<td>(0.70;1.89)</td>
<td>(0.70;1.89)</td>
<td>(0.64;1.34)</td>
<td>(0.58;1.71)</td>
<td>(0.53;1.64)</td>
</tr>
<tr>
<td>Stenosis*</td>
<td>1.16</td>
<td><0.001</td>
<td>1.14</td>
<td><0.001</td>
<td>1.16</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>(1.08;1.25)</td>
<td>(1.06;1.23)</td>
<td>(1.06;1.23)</td>
<td>(1.05;1.25)</td>
<td>(1.07;1.26)</td>
<td>(1.05;1.25)</td>
</tr>
<tr>
<td>Wall thickness</td>
<td>1.31</td>
<td><0.001</td>
<td>1.23</td>
<td>0.004</td>
<td>1.29</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(1.14;1.50)</td>
<td>(1.07;1.42)</td>
<td>(1.14;1.50)</td>
<td>(1.07;1.42)</td>
<td>(1.11;1.51)</td>
<td>(1.05;1.45)</td>
</tr>
</tbody>
</table>

IPH: intraplaque hemorrhage, OR: odds ratio, CI: confidence interval

Model 1: adjusted for sex (only in overall model), age and carotid wall thickness (except for carotid wall thickness and stenosis which were only adjusted for sex and age).

Model 2: as model 1, and additionally for smoking, total cholesterol, HDL-cholesterol, BMI, diabetes mellitus and hypertension.

* per 10% increase
颈动脉粥样硬化斑块磁共振成像影像学特征与卒中史和冠状动脉粥样硬化性心脏病病史的相关性研究

Carotid Atherosclerotic Plaque Characteristics on Magnetic Resonance Imaging Relate With History of Stroke and Coronary Heart Disease

Mariana Selwaness, MD, PhD; Daniel Bos, MD, PhD; Quirijn van den Bouwhuijsen, MD; Marileen L.P. Portegies, MD; M. Arfan Ikram, MD, PhD; Albert Hofman, MD, PhD; Oscar H. Franco, MD, PhD; Aad van der Lugt, MD, PhD; Jolanda J. Wentzel, PhD; Meike W. Vernooij, MD, PhD

背景和目的：动脉粥样硬化是一种全身系统性疾病，即使单一部位出现粥样硬化也可与远隔部位的缺血事件相关。本研究主要探讨颈动脉粥样硬化管壁厚度、狭窄程度和斑块成分与缺血性卒中史及冠状动脉粥样硬化性心脏病（coronary heart disease，CHD）病史是否相关。

方法：在对人群为基线的鹿特丹（Rotterdam）研究中，选择1731例双侧颈动脉磁共振成像（magnetic resonance imaging，MRI）检查的无症状受试者（平均年龄72.4±9.1岁，55%为男性），评估颈动脉壁厚度、狭窄、斑块成分（包括斑块内出血、脂质及钙化情况），缺血性卒中史和CHD病史在最近磁共振成像检查时均已被登记。本研究已经经过伦理委员会讨论并通过，所有的受试者全部签署了知情同意书。

结果：本研究发现，在男性患者中，颈动脉狭窄和斑块内出血与缺血性卒中史相关，但在女性中无明显相关性。男性：比值比（odds ratio，OR）在狭窄率每增加10%是1.17（95% CI, 1.06~1.30），斑块内出血OR值是2.39（95% CI, 1.32~4.35）。不同性别中，颈内动脉狭窄均和CHD不存在相关性。男性：OR值每增加10%是1.12（95% CI, 1.04~1.21）；在女性中，OR值是1.17（95% CI, 1.03~1.34）。颈内动脉壁厚度和CHD有关：男性：OR值是1.20（95% CI, 1.03~1.39）；女性：OR值为1.21（95% CI, 0.88~1.65）。斑块成分与CHD无相关性。

结论：尽管颈动脉斑块厚度和狭窄与缺血性卒中史及CHD病史存在相关性，但是颈动脉斑块内出血仅与缺血性卒中史相关，而与CHD病史不相关，从而为研究心血管事件的发病机制提供了新的视角。

关键词：动脉粥样硬化；心血管病；颈动脉狭窄；磁共振成像；卒中

Carotid Atherosclerotic Plaque Characteristics on Magnetic Resonance Imaging Relate With History of Stroke and Coronary Heart Disease

Mariana Selwaness, MD, PhD; Daniel Bos, MD, PhD; Quirijn van den Bouwhuijsen, MD; Marileen L.P. Portegies, MD; M. Arfan Ikram, MD, PhD; Albert Hofman, MD, PhD; Oscar H. Franco, MD, PhD; Aad van der Lugt, MD, PhD; Jolanda J. Wentzel, PhD; Meike W. Vernooij, MD, PhD

背景和目的：动脉粥样硬化是一种全身系统性疾病，即使单一部位出现粥样硬化也可与远隔部位的缺血事件相关。本研究主要探讨颈动脉粥样硬化管壁厚度、狭窄程度和斑块成分与缺血性卒中史及冠状动脉粥样硬化性心脏病（coronary heart disease，CHD）病史是否相关。

方法：在对人群为基线的鹿特丹（Rotterdam）研究中，选择1731例双侧颈动脉磁共振成像（magnetic resonance imaging，MRI）检查的无症状受试者（平均年龄72.4±9.1岁，55%为男性），评估颈动脉壁厚度、狭窄、斑块成分（包括斑块内出血、脂质及钙化情况），缺血性卒中史和CHD病史在最近磁共振成像检查时均已被登记。本研究已经经过伦理委员会讨论并通过，所有的受试者全部签署了知情同意书。

结果：本研究发现，在男性患者中，颈动脉狭窄和斑块内出血与缺血性卒中史相关，但在女性中无明显相关性。男性：比值比（odds ratio，OR）在狭窄率每增加10%是1.17（95% CI, 1.06~1.30），斑块内出血OR值是2.39（95% CI, 1.32~4.35）。不同性别中，颈内动脉狭窄均和CHD不存在相关性。男性：OR值每增加10%是1.12（95% CI, 1.04~1.21）；在女性中，OR值是1.17（95% CI, 1.03~1.34）。颈内动脉壁厚度和CHD有关：男性：OR值是1.20（95% CI, 1.03~1.39）；女性：OR值为1.21（95% CI, 0.88~1.65）。斑块成分与CHD无相关性。

结论：尽管颈动脉斑块厚度和狭窄与缺血性卒中史及CHD病史存在相关性，但是颈动脉斑块内出血仅与缺血性卒中史相关，而与CHD病史不相关，从而为研究心血管事件的发病机制提供了新的视角。

关键词：动脉粥样硬化；心血管病；颈动脉狭窄；磁共振成像；卒中

Correspondence to Meike W. Vernooij, MD, PhD, Department of Radiology, Erasmus MC, PO Box 2014, 3000 CA Rotterdam, The Netherlands. E-mail m.vernooij@erasusmc.nl
©2016 American Heart Association, Inc.
颈动脉 MRI 平扫与斑块特点分析

MRI 设备: 使用 1.5T 场强的磁共振扫描仪 (GE Healthcare, Milwaukee, WI) 获取图像, 这种 MRI 设备有双侧相控阵表面线圈 (Machnet, Eelde, The Netherlands), 标准平扫要求总共的扫描时间要在 30 min 左右。颈动脉 MRI 平扫操作方法、阅片和可重复性已在其他论文加以阐述。本研究评估了颈动脉分叉处向下 15 mm 和向上 30 mm 范围的双侧颈动脉, 利用 MRI 分析了所有斑块中最大厚度≥ 2.0 mm 的斑块特点。在质子密度加权快速自旋回波图像中, 根据北美症状性颈动脉内膜切除手术试验标准, 测量颈动脉壁的最大厚度, 计算出动脉管腔的狭窄率。斑块主要分为 3 种不同成分: IPH、脂质核心、钙化。IPH 表现为 T1 加权序列出现高信号。钙化表现为在所有序列斑块内出现低信号。脂质核心表现为质子密度加权快速自旋回波序列的高信号, 或者表现为与质子密度加权回波平面像相比, T2 加权回波平面像的区域的相对信号降低。单个斑块中可能包含多种成分。

既往卒中史或 CHD 病史

既往缺血性卒中史或 CHD 病史是根据患者入组前自述、经过病历档案核实, 或是基于 MRI 扫描之前的随访期间出现的临床事件。随访系统的临床材料包括了受试者提供的病例材料、医学专家的信件、脑部影像学检查和住院治疗的出院小结。对于卒中和心脏事件的诊断, 2 名参与研究的内科医生独立根据国际疾病分类 (ICD10) 对所有被报告的临床事件进行了编码。对于有争议的病例, 最终的诊断决定由神经科专科医生或心血管专科医生做出。卒中定义为缺血性卒中或非出血性卒中 (ICD10, I61, I63, I64)。CHD 定义为非致死性心肌梗死和心肌血管重建术 (例如, 经皮冠状动脉介入治疗和冠状动脉搭桥术, ICD10, I21, I24, I25)。卒中和 CHD 发生率的统计于 2012 年 1 月 1 日前完成。

协变量分析

采用经过年龄校正的线性回归分析处理连续变量和 Logistic 回归分析处理二元变量比较男性和女性 2 组间的基线特征。对有 / 无 IPH、脂质核心及钙化的患者平均动脉壁厚度和动脉狭窄程度进行分析 (表 1, 在线数据补充)。

为了研究不同斑块成分特点 [IPH、脂质、钙化 (每 10%)、颈动脉壁的厚度] 与既往缺血性卒中史及 CHD 病史的关系, 本研究采用了二元 Logistic 回归分析分别对整个样本、男性组和女性组进行统计学分析。在模型 1 中对整个样本中校正了年龄、性别和颈动脉壁厚度的影响。在模型 2 中研究者又额外校正了心血管病相关危险因素 (吸烟、总胆固醇、高密度脂蛋白胆固醇、体重指数、糖尿病和高血压) 的相关影响。本研究还评估了性别对结果的影响。本研究校正了其他斑块成分对全部斑块特征影响并进一步进行相关性分析 (见在线数据补充表 1 和表 2)。

本研究使用统计软件 SPSS 20.0 (Chicago, IL) 进行所有的统计学分析。在协变量中, 丢失的数据通过期望最大化方法进行估算。
表 2 动脉粥样硬化斑块特点和缺血性卒中病史的关系

<table>
<thead>
<tr>
<th></th>
<th>全部</th>
<th>男性</th>
<th>女性</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>模型 1</td>
<td>模型 2</td>
<td>模型 1</td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td>P 值</td>
<td>OR</td>
</tr>
<tr>
<td>斑块内出血</td>
<td>1.61(1.04~2.50)</td>
<td>0.03</td>
<td>1.47(0.94~2.30)</td>
</tr>
<tr>
<td>脂质</td>
<td>0.82(0.57~1.29)</td>
<td>0.4</td>
<td>0.9(0.60~1.39)</td>
</tr>
<tr>
<td>钙化</td>
<td>1.40(0.77~2.72)</td>
<td>0.2</td>
<td>1.32(0.70~2.50)</td>
</tr>
<tr>
<td>变异*</td>
<td>1.17(0.58~2.36)</td>
<td>0.002</td>
<td>1.14(0.65~2.04)</td>
</tr>
<tr>
<td>血管壁厚度</td>
<td>1.22(0.10~1.43)</td>
<td>0.02</td>
<td>1.17(0.95~1.38)</td>
</tr>
</tbody>
</table>

注：模型 1：校正了年龄（只在全部人群中）、年龄、颈动脉壁厚度（除了只根据性别和年龄校正的颈动脉厚度和狭窄）、模型 2：在模型 1 基础上，校正了吸烟、总胆固醇、高密度脂蛋白胆固醇、体重指数、糖尿病和高血压，CI：可信区间；IPH：斑块内出血；OR：比值比。
* 每增长 10%。

表 3 男性和女性的颈动脉粥样硬化斑块特点和 CHD 病史

<table>
<thead>
<tr>
<th></th>
<th>全部</th>
<th>男性</th>
<th>女性</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>模型 1</td>
<td>模型 2</td>
<td>模型 1</td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td>P 值</td>
<td>OR</td>
</tr>
<tr>
<td>斑块内出血</td>
<td>1.06(0.75~1.48)</td>
<td>0.8</td>
<td>1.02(0.72~1.45)</td>
</tr>
<tr>
<td>脂质</td>
<td>0.85(0.62~1.17)</td>
<td>0.3</td>
<td>0.92(0.67~1.28)</td>
</tr>
<tr>
<td>钙化</td>
<td>1.22(0.77~1.97)</td>
<td>0.4</td>
<td>1.15(0.70~1.89)</td>
</tr>
<tr>
<td>变异*</td>
<td>1.15(1.08~1.23)</td>
<td><0.001</td>
<td>1.14(1.06~1.22)</td>
</tr>
<tr>
<td>血管壁厚度</td>
<td>1.25(1.00~1.40)</td>
<td>0.07</td>
<td>1.20(1.05~1.37)</td>
</tr>
</tbody>
</table>

注：模型 1：校正了年龄（只在全部人群中）、年龄、颈动脉壁厚度（除了只根据性别和年龄校正的颈动脉厚度和狭窄）、模型 2：在模型 1 基础上，校正了吸烟、总胆固醇、高密度脂蛋白胆固醇、体重指数、糖尿病和高血压，CI：可信区间；IPH：斑块内出血；OR：比值比。
* 每增长 10%。

表 3 显示了整体和性别相关的斑块特点与既往 CHD 病史之间的相关性，并校正了年龄、颈动脉壁厚度（模型 1）、心血管危险因素（模型 2）。在校正心血管危险因素后的总体分析中显示仅有颈动脉狭窄与 CHD 病史密切相关 [OR 值在颈动脉狭窄率每增加 10% 为 1.14 (95% CI, 1.06~1.22)]，对性别分层分析并没有在本质上改变不同性别中斑块特点与 CHD 病史之间的相关性。同时，颈动脉壁厚度与男性罹患 CHD 密切相关 [OR 值, 1.20 (95% CI, 0.88~1.65)]，而与女性却无相关性 [OR 值, 1.21 (95% CI, 0.85~1.61)]。对于颈动脉狭窄和血管壁厚度，无性别相关性 (数据未显示)，任何一种斑块成分与 CHD 病史无明显相关，经过性别分层校正后亦无关联。对于斑块特点与卒中史和 CHD 病史的相关分析，即使在调整了其他斑块成分的影响进行重复分析后结果仍一致（见在线数据补充表 2 和表 3）。

讨论

本研究基于人群的研究发现，颈动脉粥样硬化斑块特征与缺血性卒中史相关，而动脉粥样硬化的严重程度（即斑块厚度和动脉狭窄）与缺血性卒中史和 CHD 病史均有显著性。斑块的成分，特别是 IPH，可能仅与既往卒中病史存在相关性。这些相关性在男性人群中表现明显，在女性人群不具有显著特异性。

颈动脉超声检测的 IMT 与心血管危险因素密切相关的 IMT 是全身性动脉粥样硬化的标志物 9-11。因此，IMT 逐渐被应用于危险因素分层，并在 CHD 的预测方面发挥着重要的作用 12-15。目前，尚未有针对颈动脉 IMT 与 CHD 病史的相关性研究。本研究应用 MRI 检查发现，与颈动脉斑块成分相比，颈动脉壁厚度和狭窄与既往 CHD 病史具有相关性。对于颈动脉狭窄和血管壁厚度，无性别相关性（数据未显示），任何一种斑块成分与 CHD 病史无明显相关，经过性别分层校正后亦无关联。对于斑块特点与卒中史和 CHD 病史的相关分析，即使在调整了其他斑块成分的影响进行重复分析后结果仍一致（见在线数据补充表 2 和表 3）。
合并症。

本研究发现，颈动脉动脉粥血硬化斑块特征在临床事件发生方面存在性别差异，其原因可能是由于女性人群中患 CHD 的人数较少，缺乏统计学效力，但斑块厚度和狭窄在男性和女性没有差别。另外，本研究中男性患者 IPH 与卒中病史相关性的统计学数据出现较大 OR 值，与之前研究发现的“IPH 主要发生于男性”的结论相一致[15, 25, 30, 31]。近期内的一篇针对颈动脉内膜剥脱术治疗有临床症状患者的研究中发现，男性 IPH 患者出现卒中和心血管事件的风险增加，但在女性则无明显差异。这项研究中所应用的压力测量仪可能存在偏移（如监测点位置不准确）[16]。另一项针对颈动脉和冠状动脉内膜剥脱术治疗有临床症状患者的研究中发现，男性 IPH 患者出现卒中和心血管事件的风险增加，但在女性则无明显差异[17]。这可能是由于女性（尤其是无症状性女性）病变组织学上含有更多纤维和较少的炎症反应，因此存在更多有效的修复能力所至[16, 18]。还有一些研究提示，女性由于存在雌激素或遗传性因素等原因，在动脉粥样硬化程度相似情况下，其 CHD 和卒中的临床表现上可出现明显差异[19, 20]。

本研究的优点和局限性如下。

优点：（1）本研究是基于人群的研究，且样本人数较大。（2）本研究记录了既往卒中史和 CHD 病史，而非其他终点事件。（3）本研究纳入的心血管事件均是经过确诊和治疗的。

局限性：（1）尽管研究尽可能确保绝大多数患者诊断的准确性，但在入组前的心脑血管事件均是来自受试者口述，可信性略差。（2）由于本研究的重处于颈动脉斑块硬化导致的死亡事件，这可能会影响斑块与临床事件的相关性。（3）研究未纳入重度动脉粥样硬化导致的死亡事件，这可能会削弱异常斑块与临床事件的相关性。（4）罹患卒中或 CHD 的患者在改变生活方式和应用药物后会对动脉粥样硬化斑块的发展产生影响（改变生活方式和应用药物会使得动脉粥样硬化斑块变得稳定）从而使得斑块的形成结果差异性减小。（5）本研究无法排除颈动脉斑块在罹患卒中或 CHD 后继续进展。

综上所述，本研究发现颈动脉斑块厚度和狭窄与缺血性卒中史和 CHD 病史具有相关性，但颈动脉 IPH 仅与缺血性卒中病史相关而与 CHD 无明显相关性。下一步研究应着眼于颈动脉 MRI 检查在缺血性卒中和卒中的临床表现上可出现明显差异。