Nerve Stimulation Enhances Task-Oriented Training in Chronic, Severe Motor Deficit After Stroke

A Randomized Trial

Cheryl Carrico, MS, OT/L; Kenneth C. Chelette, II, MS; Philip M. Westgate, PhD; Elizabeth Powell, MS; Laurie Nichols, BS, OT/L; Anne Fleischer, MPH, OT/L, CLT-LANA; Lumy Sawaki, MD, PhD

Background and Purpose—A sensory-based intervention called peripheral nerve stimulation can enhance outcomes of motor training for stroke survivors with mild-to-moderate hemiparesis. Further research is needed to establish whether this paired intervention can have benefit in cases of severe impairment (almost no active movement).

Methods—Subjects with chronic, severe poststroke hemiparesis (n=36) were randomized to receive 10 daily sessions of either active or sham stimulation (2 hours) immediately preceding intensive task-oriented training (4 hours). Upper extremity movement function was assessed using Fugl–Meyer Assessment (primary outcome measure), Wolf Motor Function Test, and Action Research Arm Test at baseline, immediately post intervention and at 1-month follow-up.

Results—Statistically significant difference between groups favored the active stimulation group on Fugl–Meyer at postintervention (95% confidence interval [CI], 1.1–6.9; P=0.008) and 1-month follow-up (95% CI, 0.6–8.3; P=0.025), Wolf Motor Function Test at postintervention (95% CI, −0.21 to −0.02; P=0.020), and Action Research Arm Test at postintervention (95% CI, 0.8–7.3; P=0.015) and 1-month follow-up (95% CI, 0.6–8.4; P=0.025). Only the active stimulation condition was associated with (1) statistically significant within-group benefit on all outcomes at 1-month follow-up and (2) improvement exceeding minimal detectable change, as well as minimal clinically significant difference, on ≥1 outcomes at ≥1 time points after intervention.

Conclusions—After stroke, active peripheral nerve stimulation paired with intensive task–oriented training can effect significant improvement in severely impaired upper extremity movement function. Further confirmatory studies that consider a larger group, as well as longer follow-up, are needed.

Clinical Trial Registration—URL: http://www.clinicaltrials.gov. Unique identifier: NCT02633215. (Stroke. 2016;47:1879-1884. DOI: 10.1161/STROKEAHA.116.012671.)

Key Words: occupational therapy • rehabilitation • stroke • upper extremity

Stroke is a major cause of death and disability.1–3 Interventions to limit tissue damage during the acute phase of stroke have resulted in some success.4,5 However, there is a need for further research on interventions to maximize recovery of function after acute stages of stroke,6 particularly with regard to upper extremity (UE) movement function in cases of severe hemiparesis (almost no active movement).7 These interventions may capitalize on neuroplastic change, which has been associated with functional recovery in cases of neurological impairment.6

Neuroplastic change and recovery of motor function after cortical lesions can be significantly influenced by sensory input.8,9 During performance of motor tasks, repetitive activation of sensory input enhances motor cortical plasticity, establishing a mechanism for the role of sensory input in motor skill acquisition.10–12 A sensory-based intervention called peripheral nerve stimulation (PNS) has been shown to increase motor cortical excitability and enhance outcomes of motor training after stroke. In a study of 22 subjects <6 months after stroke, PNS paired with 1 week of intensive task–oriented UE training was associated with more significant improvement in movement function than the effects of training alone as measured by the Wolf Motor Function Test (WMFT).13 A separate study by Sawaki et al12 investigated the effects of PNS on voluntary movement of paretic thumb in 7 subjects at least 6 months post stroke. Significantly more neuroplastic change was associated with active PNS compared with sham conditions.

Received January 6, 2016; final revision received April 13, 2016; accepted April 19, 2016.
From the Department of Physical Medicine and Rehabilitation (C.C., K.C.C., E.P., L.N., L.S.) and Department of Biostatistics, College of Public Health (P.M.W.), University of Kentucky, Lexington; HealthSouth Cardinal Hill Rehabilitation Hospital, Lexington (L.N., L.S.); Department of Occupational Science and Occupational Therapy, Eastern Kentucky University, Richmond (A.F.); and Department of Neurology, Wake Forest University, Winston-Salem, NC (L.S.).

The online-only Data Supplement is available with this article at http://stroke.ahajournals.org/lookup/suppl/doi:10.1161/STROKEAHA.116.012671/-/DC1.
Correspondence to Lumy Sawaki, MD, PhD, Department of Physical Medicine and Rehabilitation, HealthSouth Cardinal Hill Hospital, University of Kentucky, 2050 Versailles Rd, Lexington, KY 40504. E-mail lsawa2@uky.edu
© 2016 American Heart Association, Inc.

Stroke is available at http://stroke.ahajournals.org DOI: 10.1161/STROKEAHA.116.012671
Corroborating evidence from a systematic review of randomized and quasi-randomized trials indicated that motor recovery after stroke may be enhanced with PNS, especially when PNS is delivered as an adjunct to motor training.13,14

A well-validated form of motor training called intensive task–oriented training has been associated with significant neuroplastic change, as well as more significant functional gains than usual and customary care, in cases of mild-to-moderate hemiparesis.15 Further research is needed to optimize intensive task–oriented training for people with severely impaired movement function after stroke.7 In addition, randomized controlled trials showing that PNS can enhance outcomes of task-oriented training have primarily targeted only mild-to-moderate UE impairment.16–19 In sum, although pairing PNS with motor training can enhance motor recovery after stroke, it remains unclear how severity of motor deficit may affect responsiveness to this paired intervention.14 To address these evidence gaps, the purpose of this study was to investigate whether active PNS paired with intensive task–oriented training would lead to significantly more improved movement function than sham PNS paired with intensive task–oriented training for subjects with chronic, severe deficit in UE movement function after stroke.

Methods

In accordance with the Declaration of the World Medical Association (www.wma.net), this study was approved by the authorized institutional human research review boards at the institutions governing the research. All procedures followed in this study were in accordance with these institutions’ guidelines. Subjects were recruited from Cardinal Hill Rehabilitation Hospital, University of Kentucky, and Wake Forest University Baptist Medical Center (ie, the settings where data were collected) as well as local communities.

Inclusion Criteria

Participant recruitment targeted adults (aged ≥21 years) with chronic (at least 12 months after stroke), severe UE motor deficit (the inability to extend the affected metacarpophalangeal joints at least 10° and the wrist, 20°) after a single stroke. Targeting the chronic phase reduced the likelihood that spontaneous motor recovery would be a confounding factor.

Exclusion Criteria

The exclusion criteria are as follows: (1) History of carpal tunnel syndrome and documented peripheral neuropathy; (2) within 3 months of recruitment, addition of or change in dosage of drugs known to exert detrimental effects on motor recovery or interfere with neuroplasticity, such as monoamine oxidase inhibitors, α-adrenergic antagonists, benzodiazepines, muscarinic receptor antagonists, and dopaminergic antagonists22–24; and (3) aphasia or cognitive deficit severe enough to preclude informed consent.

For the trial design, a parallel-group block design was used within the conceptual framework of a superiority trial. All subjects were given a verbal and written explanation of the purposes, procedures, and potential hazards of this study before providing written informed consent to the principal investigator. After screening and enrollment by the principal investigator, baseline UE movement function was evaluated. This evaluation was repeated immediately after the intervention period and at 1-month follow-up. After baseline evaluation, the principal investigator used a computer-generated randomizer program to govern group assignment. This program generated a simple random allocation sequence (1:1) for assigning subjects into 2 equal-sized groups (ie, either active PNS paired with intensive task–oriented training; or sham [control] PNS paired with intensive task–oriented training). The order of randomization was in strict

![Figure 1. Participant flow. PNS indicates peripheral nerve stimulation.](http://stroke.ahajournals.org/)

Downloaded from http://stroke.ahajournals.org/ by guest on August 11, 2017
accordance with the order of enrollment. Each intervention session consisted of either active or sham PNS (2 hours) immediately preceding motor training (4 hours). PNS was the only independent variable. Blindedness was ensured in that subjects, care providers, and evaluators of movement function were not informed of PNS condition assignment. Furthermore, the principal investigator did not administer outcome measures or interventions; and personnel delivering PNS did not administer intensive task–oriented training. The intervention period lasted for 10 consecutive weekdays.

Sample Size
Sample size was determined using results from a previous study evaluating the effects of PNS paired with motor training (n = 3). The mean Fugl–Meyer Assessment (FMA) difference (completion minus baseline) for the active PNS condition was 11 (SD, 6.4); and for the sham PNS condition, 4. To detect a similar effect size in the present randomized trial as that observed from the previous study with 90% power, assuming a similar SD in the change, it was determined that a sample size of 18 evaluable subjects per group would be required.

Evaluation and Outcome Measures
The primary outcome measure was FMA. The FMA quantitatively measures motor recovery, sensation, coordination, and speed of movement, which has high inter-rater reliability and test–retest reliability,25 and it has been used extensively in stroke.26 The highest possible FMA motor score for a tested UE is 66. The minimal clinically important difference (MCID) for FMA is 9 to 10 points; and the minimal detectable change (MDC) is 5.27

Secondary outcome measures included the timed portion of WMFT (more-affected UE only) and the Action Research Arm Test (ARAT; more-affected UE only). The WMFT is a time- and function-based assessment of motor capacity that has established reliability, validity, and history of use in research to evaluate UE motor capacity.28 The MCID for WMFT is 1.5 to 4 s; and the MDC is 12 s.27 The ARAT measures rehabilitation-related changes in UE motor capacity29 and has measures for grasp, grip, pinch, and gross movement. The highest possible ARAT score for a tested UE is 57. The MCID for ARAT is 5.7 points; and the MDC is 3.5.27

Intervention Component 1

Peripheral Nerve Stimulation

PNS was delivered using parameters that have been shown to target upstream synaptic plasticity by preferentially activating large cutaneous and proprioceptive sensory fibers.30 There is no evidence that these parameters are associated with overstimulation.12,13–34 PNS was delivered for 2 hours in each session. Optimal positions to stimulate Erb’s point, radial, and median nerves were determined by applying a surface bar electrode (for details see the online-only Data Supplement).30–33 For active PNS, the stimulus intensity was adjusted to elicit small compound muscle action potentials of ≈50 to 100 µV.31 For sham PNS, an identical protocol was implemented except that the amplitude was set to 0 V.

Intervention Component 2

Intensive Task–Oriented Training

Immediately after each session of PNS, each subject participated in 4 hours of intensive task–oriented training. Training occurred in a 1:1 therapist:subject ratio. No physical constraint of the less-affected UE was applied, but training compelled highly repetitive use of the

<table>
<thead>
<tr>
<th>Group</th>
<th>Sex</th>
<th>Stroke Type</th>
<th>Stroke Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active (A)</td>
<td>M</td>
<td>Ischemic</td>
<td>Middle cerebral artery territory (MCA)</td>
</tr>
<tr>
<td>A</td>
<td>F</td>
<td>Hemorrhagic</td>
<td>Parietal lobe/basal ganglia</td>
</tr>
<tr>
<td>A</td>
<td>M</td>
<td>Ischemic</td>
<td>MCA</td>
</tr>
<tr>
<td>A</td>
<td>M</td>
<td>Hemorrhagic</td>
<td>MCA</td>
</tr>
<tr>
<td>A</td>
<td>F</td>
<td>Ischemic</td>
<td>MCA</td>
</tr>
<tr>
<td>A</td>
<td>F</td>
<td>Ischemic</td>
<td>MCA</td>
</tr>
<tr>
<td>A</td>
<td>M</td>
<td>Ischemic</td>
<td>MCA</td>
</tr>
<tr>
<td>A</td>
<td>M</td>
<td>Ischemic</td>
<td>MCA</td>
</tr>
<tr>
<td>A</td>
<td>F</td>
<td>Hemorrhagic</td>
<td>MCA</td>
</tr>
<tr>
<td>A</td>
<td>F</td>
<td>Hemorrhagic</td>
<td>MCA</td>
</tr>
<tr>
<td>A</td>
<td>M</td>
<td>Ischemic</td>
<td>MCA</td>
</tr>
<tr>
<td>A</td>
<td>F</td>
<td>Ischemic</td>
<td>MCA</td>
</tr>
<tr>
<td>A</td>
<td>M</td>
<td>Ischemic</td>
<td>MCA</td>
</tr>
<tr>
<td>Sham (S)</td>
<td>F</td>
<td>Ischemic</td>
<td>MCA</td>
</tr>
<tr>
<td>S</td>
<td>M</td>
<td>Ischemic</td>
<td>MCA</td>
</tr>
<tr>
<td>S</td>
<td>F</td>
<td>Ischemic</td>
<td>MCA</td>
</tr>
<tr>
<td>S</td>
<td>F</td>
<td>Ischemic</td>
<td>MCA</td>
</tr>
<tr>
<td>S</td>
<td>F</td>
<td>Ischemic</td>
<td>MCA</td>
</tr>
<tr>
<td>S</td>
<td>M</td>
<td>Ischemic</td>
<td>MCA</td>
</tr>
<tr>
<td>S</td>
<td>M</td>
<td>Ischemic</td>
<td>MCA</td>
</tr>
<tr>
<td>S</td>
<td>M</td>
<td>Hemorrhagic</td>
<td>MCA</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
<td>Ischemic</td>
<td>MCA</td>
</tr>
<tr>
<td>S</td>
<td>M</td>
<td>Ischemic</td>
<td>MCA</td>
</tr>
<tr>
<td>S</td>
<td>F</td>
<td>Ischemic</td>
<td>MCA</td>
</tr>
<tr>
<td>S</td>
<td>F</td>
<td>Hemorrhagic</td>
<td>MCA</td>
</tr>
<tr>
<td>S</td>
<td>M</td>
<td>Ischemic</td>
<td>MCA</td>
</tr>
</tbody>
</table>

F indicates female; and M, male.
Table 3. Estimated Means (SE), 95% Confidence Intervals, and P Values Corresponding to Mean Change in Score on Each Outcome Measure

<table>
<thead>
<tr>
<th>Outcome Measure</th>
<th>Postintervention—Baseline</th>
<th>1-Mo Follow-Up—Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Active</td>
<td>Sham</td>
</tr>
<tr>
<td>Fugl–Meyer Assessment</td>
<td>7.4 (1.0); (5.4, 9.5);</td>
<td>3.4 (1.0); (1.4, 5.5);</td>
</tr>
<tr>
<td></td>
<td>P=0.001</td>
<td>P=0.002</td>
</tr>
<tr>
<td>Wolf Motor Function Test</td>
<td>–0.18 (0.03); (–0.25, –0.11); P=0.0001</td>
<td>–0.06 (0.03); (–0.13, 0.01); P=0.068</td>
</tr>
<tr>
<td>Action Research Arm Test</td>
<td>6.4 (1.1); (4.1, 8.7); P=0.0001</td>
<td>2.3 (1.1); (0.1, 4.6); P=0.044</td>
</tr>
</tbody>
</table>

Results

The participant flow of the study is shown in Figure 1. Table 1 shows that baseline characteristics were similar between the 2 trial arms. Table 2 summarizes demographic and clinical characteristics of the sample.

No treatment complications or serious adverse events occurred during recruitment and follow-up (March 2005 through December 2013). One subject could not perform WMFT at any time point because of severity of motor impairment. Losses to 1-month follow-up occurred because of either transportation constraints or subjects’ enrollment in other research studies immediately after postintervention evaluation. One subject was withdrawn midintervention because of noncompliance with the study schedule. The trial ended because the desired sample size was achieved.

Table 3 summarizes estimated means and SEs, 95% confidence intervals (CIs), and P values corresponding to mean change in score on each outcome measure. Table 4 shows the proportion of subjects who showed an improvement, along with corresponding exact CI. Analysis was carried out by original assigned groups. No evidence of unintended effects (ie, unforeseen outcomes associated with intervention) was found in either group. With regard to within-group change (Table 3), all measured outcomes at all time points after intervention reflected statistically significant improvement associated with the active PNS condition. The sham PNS group showed statistically significant improvement on the FMA and the ARAT immediately after intervention but no statistically significant improvement on any outcome measure at 1-month follow-up. At postintervention, the estimated mean FMA change for the active PNS group (ie, 7.4; Table 3) exceeded MDC level (5.2). At 1-month follow-up, ARAT change for the active PNS group (ie, 6.9; Table 3) exceeded both MDC and MCID levels (3.5 and 5.7, respectively). No other association was evident between intervention and mean change at MCID or MDC levels for either group.

Table 4 summarizes between-groups comparisons. For the active PNS group, score changes on all outcome measures from baseline to immediately postintervention were significantly greater than score changes for the sham PNS group (FMA 95% CI, 1.1 to 6.9; P=0.008; WMFT 95% CI, –0.21 to –0.02; P=0.020; and ARAT 95% CI, 0.8 to 7.3; P=0.015). Statistically significant differences between groups persisted to 1-month follow-up on all outcome measures except for WMFT (FMA 95% CI, 0.6–8.3; P=0.025 and ARAT 95% CI, 0.6–8.4; P=0.025).

Discussion

For stroke survivors with chronic, severe impairment in movement function, active PNS paired with intensive task-oriented training can effect significant improvement in UE movement function. For both the groups in this study, intensive task-oriented training was associated with significant benefit immediately after intervention. These findings seem to counter previously published review evidence that stroke survivors with severe hemiparesis cannot benefit from intensive task-oriented training as a singular intervention delivered.

Table 4. Individual Effects of Active Peripheral Nerve Stimulation (PNS) Paired With Intensive Task–Oriented Training (Exploratory Analysis)

<table>
<thead>
<tr>
<th></th>
<th>Fugl–Meyer Assessment</th>
<th>Wolf Motor Function Test</th>
<th>Action Research Arm Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postintervention—baseline</td>
<td>17/18=0.94 (0.73, 0.999)</td>
<td>17/18=0.94 (0.73, 0.999)</td>
<td>16/18=0.89 (0.65, 0.99)</td>
</tr>
<tr>
<td>1-mo follow-up—baseline</td>
<td>15/16=0.94 (0.70, 0.998)</td>
<td>14/16=0.88 (0.62, 0.98)</td>
<td>16/16=1.00 (0.79, 1.00)</td>
</tr>
</tbody>
</table>

The proportion of subjects who showed an improvement, along with the corresponding exact confidence interval, is shown.
in a hands-on fashion (as opposed to robot-assisted therapy). However, this review was predicated on studies spanning acute to chronic stages of stroke, unlike this study.

In this study, only the active PNS condition was associated with (1) statistically significant benefit at 1-month follow-up and (2) improvement exceeding MDC, as well as MCID, on ≥1 outcome measures at ≥1 time points after intervention. A statistically significant difference between groups favored the active PNS group on both the evaluation time points after intervention. Taken together, these findings highlight that in cases of chronic, severe poststroke impairment, outcomes of intensive task–oriented training can be significantly enhanced, both statistically and clinically, with active PNS. To help substantiate whether these effects persist longitudinally, further research using 6-month follow-up or longer is recommended.

A possible trial limitation is that although preparatory techniques were used to reduce spasticity during intervention, spasticity may have affected evaluation. Specifically, on 1-month between-groups analysis, the only outcome that reflected no statistically significant difference between groups was WMFT. As WMFT is a time-dependent measure, and because abnormal spasticity is a velocity-dependent mechanism, it is conceivable that WMFT may be particularly suited to measure change in populations in which speed of movement is unlikely to trigger a level of spasticity that interferes with functional performance. Future studies incorporating objective measures of spasticity are recommended to build on the results of this study.

Benefits of intervention were not sufficient to effect full recovery of movement function for study participants. Further research is needed to establish (1) what other interventions would augment these benefits for the target population as well as (2) optimal parameters of PNS intervention. It is conceivable that delivering PNS to Erb’s point alone, in conjunction with motor training, would effect desired change. This streamlined setup would potentially increase ease of clinical use by minimizing the number of needed electrodes. Similarly, establishing optimal dose–response and timing parameters would enhance the translational potential of PNS paired with motor training. Finally, to enhance generalizability of this trial’s findings, studies are recommended to help establish whether PNS may enhance outcomes of intensive task–oriented training during other phases (eg, subacute) or contexts (eg, activities of daily living in home and community) of recovery after stroke.

Acknowledgments
Preliminary results of this study were first presented in poster form at the University of Kentucky’s 7th Annual Center for Clinical and Translational Science Spring Conference in March 2012 in Lexington, KY. We extend our heartfelt appreciation to our study participants and to Dr David Jackson for referrals.

Sources of Funding
This study was funded by American Heart Association Scientist Development Award 0530242N as well as the Cardinal Hill Rehabilitation Hospital Endowed Chair in Stroke and Spinal Cord Injury Rehabilitation (0705129700).

Disclosures
Dr Sawaki serves as a consultant to HealthSouth Cardinal Hill Rehabilitation Hospital.

References
Fleming MK, Sorinola IO, Roberts-Le
10.1620/tjem.231.93.

Tohoku J Exp Med
Kim

Nerve Stimulation Enhances Task-Oriented Training in Chronic, Severe Motor Deficit After Stroke: A Randomized Trial
Cheryl Carrico, Kenneth C. Chelette II, Philip M. Westgate, Elizabeth Powell, Laurie Nichols, Anne Fleischer and Lumy Sawaki

Stroke. 2016;47:1879-1884; originally published online May 17, 2016;
doi: 10.1161/STROKEAHA.116.012671
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/47/7/1879

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2016/05/17/STROKEAHA.116.012671.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/
Supplemental methods: For peripheral nerve stimulation (PNS), gold-plated stimulating electrodes were placed with the cathode positioned proximally over each of the optimal positions1,2. EMG electrodes were placed over the bellies of the deltoid, triceps, and abductor pollicis brevis muscles. Trains of electrical stimulation were delivered at 1Hz through an isolation unit connected to a S88 square pulse stimulator (Grass stimulator, Astro-Med, Inc, West Warwick, RI). Each train consisted of 5 single pulses of 1ms duration, 100ms apart (50% duty cycle) at 10Hz2. EMG activity was amplified and filtered (bandpass, 10-3000Hz) and recorded using a data collection/analysis program written in LabVIEW (National Instruments, Austin, TX). Individual PNS pulses were delivered with an offset of 15ms between each stimulation channel to prevent stimulation of distal nerves from being blocked by stimulation of more proximal nerves (i.e., collision3). For task-oriented training, tasks targeted occupations (such as activities of daily living) and prerequisites to function (such as release, grasp, or supination). For example, subjects practiced self-feeding using the more-affected UE to stabilize a plate while the less-affected UE used utensils to scoop food. Alternately, the occupational therapist used hand-over-hand assistance, as well as adaptive equipment, to engage the more-affected upper extremity (UE) in task practice. Other preparatory techniques to reduce spasticity (e.g., intermittent stretching; weight-bearing) were used as needed to optimize participation. The target range for repetitions of any given task was 10 to 50 according to the demands of the task. Subjects were asked to report of sense of effort for each task according to a scale of 1-10.
SUPPLEMENTAL REFERENCES

