Risk of Pulmonary Embolism After Cerebral Venous Thrombosis

Ava L. Liberman, MD*; Alexander E. Merkler, MD*; Gino Gialdini, MD; Steven R. Messé, MD; Michael P. Lerario, MD; Santosh B. Murthy, MD, MPH; Hooman Kamel, MD; Babak B. Navi, MD, MS

Background and Purpose—Cerebral vein thrombosis (CVT) is a type of venous thromboembolism. Whether the risk of pulmonary embolism (PE) after CVT is similar to the risk after deep venous thrombosis (DVT) is unknown.

Methods—We performed a retrospective cohort study using administrative data from all emergency department visits and hospitalizations in California, New York, and Florida from 2005 to 2013. We identified patients with CVT or DVT and the outcome of PE using previously validated International Classification of Diseases, Ninth Revision, Clinical Modification codes. Kaplan–Meier survival statistics and Cox proportional hazards models were used to compare the risk of PE after CVT versus PE after DVT.

Results—we identified 4754 patients with CVT and 241,276 with DVT. During a mean follow-up of 3.4 (±2.4) years, 138 patients with CVT and 23,063 with DVT developed PE. CVT patients were younger, more often female, and had fewer risk factors for thromboembolism than patients with DVT. During the index hospitalization, the rate of PE was 1.4% (95% confidence interval [CI], 1.1%–1.8%) in patients with CVT and 6.6% (95% CI, 6.5%–6.7%) in patients with DVT. By 5 years, the cumulative rate of PE after CVT was 3.4% (95% CI, 2.9%–4.0%) compared with 10.9% (95% CI, 10.8%–11.0%; P < 0.001) after DVT. CVT was associated with a lower adjusted hazard of PE than DVT (hazard ratio, 0.26; 95% CI, 0.22–0.31).

Conclusion—The risk of PE after CVT was significantly lower than the risk after DVT. Among patients with CVT, the greatest risk for PE was during the index hospitalization. (Stroke. 2017;48:563-567. DOI: 10.1161/STROKEAHA.116.016316.)

Key Words: cerebral venous thrombosis ▪ deep vein thrombosis ▪ pulmonary embolism ▪ thrombosis ▪ venous thromboembolism

Cerebral venous thrombosis (CVT) often affects young patients and can result in substantial disability and death.1,2 Though mortality rates among patients with CVT have declined, new epidemiological data suggests a higher annual incidence of CVT than previously reported.5-7 A diagnosis of CVT is associated with subsequent risk of venous thromboembolism, including deep vein thrombosis (DVT), pulmonary embolism (PE), and recurrent CVT, contributing to the adverse clinical outcomes of some CVT patients.4,8-12 However, whether the risk of recurrent venous thromboembolism after CVT is similar to that after a diagnosis of DVT has not been carefully explored. To help quantify the disease burden of CVT, we used a large heterogeneous group of patients to evaluate the risk of incident PE, a particularly dangerous form of venous thromboembolism, among patients with CVT as compared with those with DVT.13,14

Methods

Study Design

We performed a retrospective cohort study using administrative claims data from all emergency department visits and nonfederal hospitalizations in California from 2005 to 2011, in New York from 2006 to 2013, and in Florida from 2005 to 2013. These data were collected by the California Office of Statewide Health Planning and Development, the New York Statewide Planning and Research Cooperative System, and the Florida Agency for Healthcare Administration. These agencies provide data to the Agency for Healthcare Research and Quality for its Healthcare Cost and Utilization Project.15 Each patient is assigned a personal linkage number that allows for anonymous tracking through all subsequent hospitalizations.16 Up to 25 discharge diagnoses are coded at each encounter using the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) system. The institutional review board at Weill Cornell Medicine approved this study and waived the requirement for written informed consent.

Received October 14, 2016; final revision received December 6, 2016; accepted December 21, 2016.

From the Department of Neurology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY (A.L.L.); Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute (A.E.M., G.G., S.B.M., H.K., B.B.N.), and Department of Neurology, Weill Cornell Medicine (A.E.M., G.G., S.B.M., H.K., B.B.N.), New York, NY; Department of Neurology, University of Pennsylvania, Philadelphia (S.R.M.); and Department of Neurology, Weill Cornell Medicine, New York-Presbyterian Queens, Flushing, NY (M.P.L.).

*Drs Liberman and Merkler contributed equally and are joint first authors.

Presented in part at the International Stroke Conference of the American Heart Association, Houston, TX, February 22–24, 2017.

Correspondence to Alexander E. Merkler, MD, 525 E 68th St, F610, New York, NY 10065. E-mail alm9097@med.cornell.edu

© 2017 American Heart Association, Inc.

Stroke is available at http://stroke.ahajournals.org

DOI: 10.1161/STROKEAHA.116.016316
Subjects

We identified all adult patients with an emergency department visit or hospitalization with a first-recorded discharge diagnosis of CVT or DVT. CVT was defined using ICD-9-CM codes 415.0, 437.6, and 671.5 in any discharge diagnosis code position. These codes have been previously validated via detailed medical record review and have a positive predictive value of 76%, sensitivity of 78%, and specificity of 93%. DVT was defined using ICD-9-CM codes 451.19, 451.2, 451.81, 451.9, 453.1, 453.2, 453.8, or 453.9 in any emergency department visit or hospital discharge diagnosis code position. These codes have been shown to have a positive predictive value of 96% when compared with detailed medical record review. To assess incident cases of PE, patients with diagnoses of PE before the index visit for CVT or DVT were excluded. To minimize misclassification error, patients with both CVT and DVT during the same index hospitalization were excluded. Finally, we excluded nonresidents from California, New York, and Florida to maximize the completeness of follow-up.

Measurements

The primary outcome was PE defined by ICD-9-CM codes 415.1 or 415.11 in any hospital discharge diagnosis code position. This definition has been shown to have a positive predictive value of 96% when compared with detailed medical record review. To account for factors that may explain differences in rates of PE after CVT or DVT, we used ICD-9-CM codes to identify the following comorbidities that have been reported as risk factors for venous thromboembolic events: hypertension, diabetes mellitus, coronary artery disease, peripheral vascular disease, congestive heart failure, chronic kidney disease, tobacco use, chronic obstructive pulmonary disease, pregnancy, alcohol abuse, atrial fibrillation, trauma, a primary hypercoagulable state, and any history of cancer. We used the Elixhauser comorbidity index to account for disease severity.

Statistical Analysis

We used standard descriptive statistics with exact confidence intervals (CI) to report crude rates. Patients were censored at the time of death or at the end of the follow-up period. Additionally, patients with CVT were censored if they had a subsequent encounter for DVT before the primary outcome of interest. Likewise, patients with DVT were censored if they had a subsequent encounter for CVT before the primary outcome of interest. Kaplan–Meier survival statistics were used to calculate cumulative rates of PE. The log-rank test was used to compare cumulative rates of outcomes between patients with CVT and DVT. We used multivariate Cox proportional hazards modeling to assess the relationship between the index diagnosis (CVT or DVT) and subsequent PE, while adjusting for demographics and comorbidities. We performed a sensitivity analysis excluding pregnant patients with CVT because this subgroup may have a unique risk of recurrent venous thromboembolism as compared with other CVT patients.

We also performed a sensitivity analysis excluding all patients with any history of cancer according to a previously reported ICD-9-CM diagnostic code algorithm. The proportional hazard assumption was confirmed by inspection of log–log plots. All analyses were performed using Stata/MP, version 13 (StataCorp, TX). The threshold for statistical significance allowed for an alpha error of 0.05.

Results

We identified a total of 6181 patients with CVT and 286470 patients with DVT. After excluding patients who had a prior history of PE, a concomitant CVT and DVT during the same hospitalization, or who were nonresidents from California, New York, and Florida, our final cohort consisted of 4754 patients with CVT and 241276 patients with DVT. The mean age of patients with CVT was 43.6 (±18.4) years, and 73.3% were female; in comparison, the mean age of patients with CVT was 62.5 (±17.9) years, and 52.9% were female. Patients with CVT were more often non-white and had fewer risk factors for venous thromboembolism than patients with DVT (Table 1).

Table 1. Patient Characteristics, Stratified by Index Diagnosis

<table>
<thead>
<tr>
<th>Characteristic*</th>
<th>CVT (N=4754)</th>
<th>DVT (N=241276)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (SD), y</td>
<td>43.6 (18.4)</td>
<td>62.5 (17.9)</td>
</tr>
<tr>
<td>Female</td>
<td>3483 (73.3)</td>
<td>127661 (52.9)</td>
</tr>
<tr>
<td>Race†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>2568 (55.3)</td>
<td>154389 (65.3)</td>
</tr>
<tr>
<td>Black</td>
<td>722 (15.5)</td>
<td>38130 (16.1)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>889 (19.1)</td>
<td>30651 (13.0)</td>
</tr>
<tr>
<td>Asian</td>
<td>213 (4.6)</td>
<td>5901 (2.4)</td>
</tr>
<tr>
<td>Other</td>
<td>255 (5.4)</td>
<td>7545 (3.2)</td>
</tr>
<tr>
<td>Payment source‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medicare</td>
<td>853 (18.0)</td>
<td>130776 (54.2)</td>
</tr>
<tr>
<td>Medicaid</td>
<td>1104 (23.2)</td>
<td>28390 (11.8)</td>
</tr>
<tr>
<td>Private</td>
<td>2301 (48.4)</td>
<td>62631 (26.0)</td>
</tr>
<tr>
<td>Self-pay</td>
<td>265 (5.6)</td>
<td>10107 (4.2)</td>
</tr>
<tr>
<td>Other</td>
<td>231 (4.9)</td>
<td>9331 (3.9)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1326 (27.9)</td>
<td>124299 (51.5)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>653 (13.7)</td>
<td>63064 (26.1)</td>
</tr>
<tr>
<td>Coronary heart disease</td>
<td>243 (5.1)</td>
<td>52191 (21.6)</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>149 (3.1)</td>
<td>41281 (17.1)</td>
</tr>
<tr>
<td>Peripheral vascular disease</td>
<td>76 (1.6)</td>
<td>16393 (6.8)</td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disease</td>
<td>133 (2.8)</td>
<td>33174 (13.8)</td>
</tr>
<tr>
<td>Chronic kidney disease</td>
<td>127 (2.7)</td>
<td>44541 (18.5)</td>
</tr>
<tr>
<td>Primary hypercoagulable state</td>
<td>309 (6.5)</td>
<td>4204 (1.7)</td>
</tr>
<tr>
<td>Cancer</td>
<td>326 (6.9)</td>
<td>44835 (18.6)</td>
</tr>
<tr>
<td>Trauma</td>
<td>127 (2.7)</td>
<td>4793 (2.0)</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>171 (3.6)</td>
<td>34717 (14.4)</td>
</tr>
<tr>
<td>Pregnancy§</td>
<td>1237 (35.6)</td>
<td>44276 (34.7)</td>
</tr>
<tr>
<td>Tobacco use</td>
<td>223 (4.7)</td>
<td>19022 (7.9)</td>
</tr>
<tr>
<td>Alcohol use</td>
<td>430 (9.1)</td>
<td>24950 (10.3)</td>
</tr>
<tr>
<td>Elixhauser comorbidities, mean (SD)</td>
<td>1.7 (1.6)</td>
<td>3.3 (2.1)</td>
</tr>
</tbody>
</table>

CVT indicates cerebral vein thrombosis; DVT, deep vein thrombosis; and SD, standard deviation.

*Data are presented as number (%) unless otherwise specified.
†Self-reported by patients or their surrogates. Numbers do not sum to group totals because of missing race/ethnicity data in ≤2.3% of patients.
‡Numbers do not sum to group totals because of missing payment-source data in <0.01% of patients.
§The percentage of pregnant women is derived from the total number of women in the cohort.

DVT was 62.5 (±17.9) years, and 52.9% were female. Patients with CVT were more often non-white and had fewer risk factors for venous thromboembolism than patients with DVT (Table 1).
The rate of PE during the index hospitalization was 1.4% (95% CI, 1.1%–1.8%) for patients with CVT and 6.6% (95% CI, 6.5%–6.7%; \(P<0.001 \)) for patients with DVT. During a mean follow-up of 3.4 (±2.4) years, 138 patients with CVT developed a PE and 23,063 patients with DVT developed a PE. Patients with PE were more likely to be white, more often privately insured, and had more risk factors for venous thromboembolism than those without PE (Table 2). By 5 years, the cumulative rate of PE after CVT was 3.4% (95% CI, 2.9%–4.0%) versus 10.9% (95% CI, 10.8%–11.0%; \(P<0.001 \)) after DVT (Figure).

After adjustment for demographics and comorbidities, patients with CVT had a significantly lower hazard of PE than patients with DVT (hazard ratio, 0.26; 95% CI, 0.22–0.31). Our results were similar in sensitivity analyses excluding patients who had a CVT during pregnancy (hazard ratio, 0.36; 95% CI, 0.29–0.44) and after excluding patients with any history of cancer (hazard ratio, 0.30; 95% CI, 0.24–0.37).

Discussion

In a large, heterogeneous cohort, we found that the risk of PE among patients with CVT was significantly lower than the risk of PE among patients with DVT. In addition, although absolute rates were relatively low, the highest risk period for PE after CVT was during the index CVT hospitalization.

The cumulative rate of PE among patients with CVT in our cohort is slightly higher than that of previous studies. The incidence of PE after CVT has ranged from 0.6% to 1.8% in prior studies with variable durations of follow-up.\(^5\)–\(^8\),\(^12\)–\(^13\) It is possible that the lower rates of PE after CVT reported in earlier studies are related to differences in duration of follow-up and methodology of case ascertainment. In addition, because we included only cases of CVT diagnosed at an emergency department visit or hospitalization, we may have included patients with more severe disease presentations than those in previous studies thereby conferring higher PE risk.\(^5\),\(^33\) Finally, by relying on ICD-9-CM codes, we may have captured several incidental, asymptomatic PEs, whereas prior research included mostly symptomatic PE.\(^6\) The frequency of PE diagnosed during an index CVT hospitalization has to our knowledge not been previously reported, though PE is commonly thought to be a cause of early death among CVT patients.\(^7\) The cumulative rate of PE after diagnosis of DVT in our cohort is similar to that of prior reports (range of 4.6%–19.2%).\(^31\),\(^38\),\(^39\)

Several possible mechanisms may account for the lower risk of PE among patients with CVT than among patients with DVT. Underlying prothrombotic states or other conditions predisposing to CVT formation may be different than those associated with DVT and PE. Indeed, in our study,
patients with DVT more often had known venous thromboembolic risk factors, such as older age and male sex, as compared with patients with CVT.20,40 Alternatively, there may be important pathophysiologic differences between systemic and intracranial venous clot formation that might at least partly underlie our central finding. For instance, in lower extremity deep veins, thrombi originate in the valve pocket, the area between a valve leaflet and the vessel wall, while cerebral sinuses lack valves.31,42 Additionally, because cerebral sinuses are smaller in diameter than deep lower extremity veins, thrombi that break off from the original site in patients with CVT may be small and, therefore, less likely to cause PE.41–43

Our study has important limitations. First, we relied on administrative claims data using diagnosis codes to identify CVT, DVT, and PE. Though the ICD-9-CM codes we used to identify these 3 conditions have been previously validated through chart and imaging review, we were unable to qualify the clinical severity of thromboembolism or any imaging characteristics in our study population.17–19 In addition, the validity of case ascertainment is further supported by the similarity in age and sex between the CVT patients in our study and those in the ISCVT cohort (International Stroke on Cerebral Vein and Dural Sinus Thrombosis).3 Second, though we adjusted for demographics, a wide range of comorbidities, and the Elixhauser comorbidity index, we were unable to fully adjust for several venous thromboembolic risk factors, including body mass index, immobility, oral contraception use, and relevant laboratory data, such as coagulation studies.10,22,24,44,45 Third, we lacked information regarding the use, type, duration, or intensity of anticoagulation therapy, though the currently recommended treatment algorithms for DVT and CVT are similar.46,47

Conclusions

In a large, heterogeneous cohort, the overall risk of PE after CVT was higher than the risk previous reports have suggested but significantly lower than the risk after DVT. Among patients with CVT, the greatest risk for PE was during the index hospitalization, suggesting that early detection of CVT and timely initiation of anticoagulation may be important. Therapeutic strategies to prevent recurrent venous thromboembolism after CVT, including the optimal duration of therapy, may require further evaluation as current guidelines rely mostly on data from studies on patients with DVT.46,47

Acknowledgments

We are grateful to Monica Chen for copyediting and clerical assistance. Statistical Analyses were performed by Dr Alexander E. Merkler and Dr Gino Gialdini.

Sources of Funding

Dr Liberman is supported by grant 1U10NS086474 from the National Institute of Neurological Disorders and Stroke. Dr Gialdini is supported by a grant from the Feil Family Foundation. Dr Murthy is supported by the American Academy of Neurology and American Brain Foundation. Dr Kamel is supported by grants K23NS082367 and R01NS097443 from the National Institute of Neurological Disorders and Stroke. Dr Navi is supported by grant K23NS091395 and the Florence Gould Endowment for Discovery in Stroke.

Disclosures

None.

References

35. Liberman et al. Cerebral Venous Thrombosis and Pulmonary Embolism 567

Risk of Pulmonary Embolism After Cerebral Venous Thrombosis
Ava L. Liberman, Alexander E. Merkler, Gino Gialdini, Steven R. Messé, Michael P. Lerario,
Santosh B. Murthy, Hooman Kamel and Babak B. Navi

Stroke. 2017;48:563-567; originally published online February 22, 2017;
doi: 10.1161/STROKEAHA.116.016316

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2017 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/48/3/563

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office.
Once the online version of the published article for which permission is being requested is located, click
Request Permissions in the middle column of the Web page under Services. Further information about this
process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/