Subclinical cerebrovascular disease (SCVD), as manifested by silent brain infarcts (SBI) or white matter hyperintensities (WMHs) visualized on magnetic resonance imaging (MRI), has been associated with incident ischemic stroke and cognitive dysfunction and dementia. There is little data on blood biomarkers and their association with SCVD, but such knowledge could help identify novel preventive and therapeutic targets for stroke, cognitive dysfunction, and dementia simultaneously. For this purpose, the measurement of blood biomarkers, which may indicate underlying subclinical pathological processes, could be an important adjunct to traditional risk assessment.

Chronic infections have been associated with stroke risk and cognitive impairment even after adjusting for other potential confounders. Serum procalcitonin concentrations correlate with the extent and severity of microbial invasion. In a recent study nested within the NOMAS (Northern Manhattan Study), procalcitonin concentrations were associated specifically with small vessel stroke. Higher natriuretic peptide levels reflect the severity of cardiac dysfunction. There is increasing evidence supporting the potential role of elevated natriuretic peptides as risk factors for cognitive impairment. Midregional proatrial natriuretic peptide (MR-proANP) has been shown to be associated specifically with cardioembolic stroke pathogenesis.

Both chronic infections and underlying cardiac dysfunction may be risk factors not only for overt ischemic stroke but also for SCVD. Thus, we hypothesized that procalcitonin, as a surrogate for bacterial infections, and MR-proANP, as a marker of cardiac dysfunction, previously associated with subclinical cerebrovascular damage, including silent brain infarcts and white matter hyperintensity volume.

Background and Purpose—Chronic infections and cardiac dysfunction are risk factors for stroke. We hypothesized that blood biomarkers of infection (procalcitonin) and cardiac dysfunction (midregional proatrial natriuretic peptide [MR-proANP]), previously associated with small vessel stroke and cardioembolic stroke are also associated with subclinical cerebrovascular damage, including silent brain infarcts and white matter hyperintensity volume.

Methods—The NOMAS (Northern Manhattan Study) was designed to assess risk factors for incident vascular disease in a multiethnic cohort. A subsample underwent brain magnetic resonance imaging and had blood samples available for biomarker measurement (n=1178). We used logistic regression models to estimate the odds ratios and 95% confidence intervals (95% CIs) for the association of these biomarkers with silent brain infarcts after adjusting for demographic, behavioral, and medical risk factors. We used linear regression to assess associations with log-white matter hyperintensity volume.

Results—Mean age was 70±9 years; 60% were women, 66% Hispanic, 17% black, and 15% were white. After adjusting for risk factors, subjects with procalcitonin or MR-proANP in the top quartile, compared with the lowest quartile were more likely to have silent brain infarcts (adjusted odds ratio for procalcitonin, 2.2; 95% CI, 1.3–3.7 and for MR-proANP, 3.3; 95% CI, 1.7–6.3) and increased white matter hyperintensity volume (adjusted mean change in log-white matter hyperintensity volume for procalcitonin, 0.29; 95% CI, 0.13–0.44 and for MR-proANP, 0.18; 95% CI, 0.004–0.36).

Conclusions—Higher concentrations of procalcitonin, a marker of infection, and MR-proANP, a marker of cardiac dysfunction, are independently associated with subclinical cerebrovascular damage. If further studies demonstrate an incremental value for risk stratification, biomarker-guided primary prevention studies may lead to new approaches to prevent cerebrovascular disease.

Key Words: biomarkers ■ brain infarction ■ risk factor ■ stroke ■ white matter...
small vessel stroke and cardioembolic stroke, respectively, would also be associated with MRI measures of SCVD in the ethnically diverse Northern Manhattan population.

Methods

Study Population

NOMAS is a population-based cohort study among 3298 initially stroke-free participants identified using random digit dialing with dual-frame sampling to identify telephone numbers. NOMAS was designed to evaluate the effects of medical, socioeconomic, and other risk factors on the incidence of vascular disease in a stroke-free multiethnic community cohort. Methods of participant recruitment, evaluation, and follow-up have been previously reported. Briefly, subjects were eligible if they (1) had never had a stroke diagnosed, (2) were >40 years of age, and (3) resided in Northern Manhattan in a household with a telephone. Participants underwent a thorough baseline examination. Standardized questions about vascular risk factors were adapted from the Centers for Disease Control and Prevention Behavioral Risk Factor Surveillance System as defined previously. Changes in health or vital status were determined through annual telephone follow-up and clinical examinations. The Institutional Review Boards at Columbia University Medical Center and the University of Miami approved the study. All participants gave informed consent to participate in the study.

MRI Sample

Participants included in this analysis were part of a sample recruited from the NOMAS cohort to undergo brain MRI scans, using the following criteria: (1) age ≥250 years, (2) no contraindications to MRI, and (3) willing to sign informed consent. To maximize recruitment, an additional 199 participants, who were household members of existing NOMAS participants (n=1091), were recruited into the MRI sample for a total of 1290 participants. Out of these 199 household members, 29 (15%) were blood relatives. Imaging was performed on a 1.5-T MRI system (Philips Medical Systems, Best, The Netherlands). Baseline Characteristics

Demographics and clinical characteristics of the study population (n=1178) are summarized in Table 1. The mean age of the sample at the time of brain MRI was 69.8±8.9 years, 60% were women, and the majority (66%) were Hispanic. Median procalcitonin levels were 0.0254 µg/L (IQR 0.015–0.039 µg/L) and median MR-proANP levels were 90.2 pmol/L (IQR 62–132.8 pmol/L).

In this MRI cohort with available blood, 168 participants (15%) had at least 1 SBI and the median WMHV (WMHV/TCV×100) was 0.35% intracranial volume (IQR 0.21–0.75% intracranial volume). Biomarker distribution according to the presence of SBI is shown in Figures 1 and 2.

Biomarker Measurements

At baseline, blood samples were obtained, centrifuged, and frozen at −80°C in 1 mL aliquots until the time of analysis. The samples of 1178 subjects with available serum were shipped on dry ice to the Department of Clinical Chemistry, University Hospital of Zurich, for biomarker measurements. Samples were thawed at 4°C before measurements and analyzed within 1 hour, thus reducing preanalytic errors. Procalcitonin concentrations were measured using a sensitive assay with a detection limit of 0.007 ng/mL (B-R-A-H-M-Sус PCT-sensitive KRYPTOR, Thermo-Scientific, BRAHMS, Hennigsdorf Berlin, Germany). MR-proANP concentrations were measured using an immunoassay with a detection limit of 2.1 pmol/L (B-R-A-H-M-S KRYPTOR, Thermo Scientific, BRAHMS). Quality control was maintained using standardized procedures. All testing was performed in a batched analysis, blinded to all clinical data. Stability at room temperature and after freezing and thawing has been documented for both biomarkers, respectively.

Statistical Analyses

We calculated descriptive statistics for the clinical, demographic, and biomarker variables. The primary outcomes for this analysis were (1) the presence of SBI (dichotomous variable) and (2) WMHV (continuous variable). The main variables, procalcitonin and MR-proANP, were log transformed to achieve linearity and analyzed continuously and by quartile to facilitate clinical interpretation. Odds ratios (ORs for SBI) and β-coefficients (β for WMHV) and 95% confidence intervals (95% CI) were calculated, unadjusted, and adjusted for demographic and vascular risk factors. Covariates included predictors of ischemic stroke and WMHV in previous analyses in NOMAS, including age at the time of MRI, sex, race-ethnicity, education, and insurance status, physical activity, smoking status, moderate alcohol consumption, diabetes mellitus, cardiac disease, including atrial fibrillation, systolic and diastolic blood pressures, low-density lipoprotein, and high-density lipoprotein. We also included estimated glomerular filtration rate because these biomarkers undergo renal clearance. We assessed potential effect modification of the association between the biomarker levels and the outcomes by each vascular risk factor.

All testing was 2-tailed, and P<0.05 was considered statistically significant. All calculations were performed using SAS v9.1.3 (SAS Institute, Cary, NC).

Results

Baseline Characteristics

Demographics and clinical characteristics of the study population (n=1178) are summarized in Table 1. The mean age of the sample at the time of brain MRI was 69.8±8.9 years, 60% were women, and the majority (66%) were Hispanic. Median procalcitonin levels were 0.0254 µg/L (IQR 0.015–0.039 µg/L) and median MR-proANP levels were 90.2 pmol/L (IQR 62.2–132.8 pmol/L).

In this MRI cohort with available blood, 168 participants (15%) had at least 1 SBI and the median WMHV (WMHV/TCV×100) was 0.35% intracranial volume (IQR 0.21–0.75% intracranial volume). Biomarker distribution according to the presence of SBI is shown in Figures 1 and 2.

Association of Procalcitonin With MRI Measures of SCVD

In the unadjusted analysis, procalcitonin concentration was associated with the prevalence of SBI (OR, 1.32 per SD of log-procalcitonin; 95% CI, 1.12–1.56). This association remained after adjusting for demographic and vascular risk factors (OR, 1.25 per SD of log-procalcitonin; 95% CI, 1.03–1.50). When analyzed by quartiles, individuals in the top procalcitonin quartile were more likely to have SBI compared with those in the lowest quartile (unadjusted OR, 2.44; 95% CI, 1.51–3.96; Table 2). After adjusting for demographic and vascular risk factors, those with procalcitonin in the top quartile, compared with the lowest quartile, remained...
Association of MR-proANP With Measures of SCVD

In the unadjusted analysis, MR-proANP concentration was associated with SBI (OR, 1.67 per SD of log MR-proANP; 95% CI, 1.42–1.97); this association remained after adjusting for demographic and vascular risk factors (OR, 1.54 per SD of log MR-proANP; 95% CI, 1.22–1.94). When analyzed by quartiles, individuals in the top MR-proANP quartile were more likely to have SBI compared with those in the lowest quartile (unadjusted OR, 3.99; 95% CI, 2.39–6.65). This association remained after adjusting for demographic and vascular risk factors (adjusted OR, 3.31; 95% CI, 1.74–6.32; Table 2). We found no effect modification by vascular risk factors.

MR-proANP concentration was further associated with WMHV (unadjusted mean change in logWMHV per SD of logMR-proANP 0.28; 95% CI, 0.22–0.33), although this linear association was no longer statistically significant after adjusting for demographic and vascular risk factors (adjusted mean change in logWMHV per SD of logMR-proANP 0.05; 95% CI, −0.01 to 0.12). When analyzed by quartiles, participants with MR-proANP levels in the top quartile had greater WMHV than those in the lowest quartile (unadjusted mean change in logWMHV 0.74; 95% CI, 0.59–0.90) and this persisted after adjusting for sociodemographic and vascular risk factors, although the effect was attenuated (adjusted mean change in logWMHV 0.18; 95% CI, 0.004–0.36; Table 3). We found no effect modification by baseline vascular risk factors.

Discussion

In this urban, multiethnic, population-based sample, procalcitonin, a marker of bacterial infection, and MR-proANP, a marker for cardiac dysfunction, were each independently associated with 2 measures of subclinical cerebrovascular damage, SBI and WMHV. However, the association of MR-proANP concentrations with WMHV was less pronounced compared with the association with SBI.

Silent brain infarction serves as an imaging biomarker of vascular brain health. SBI has been associated with traditional vascular risk factors, as well as with future clinical stroke, cognitive decline, and dementia. The independent association of SBI with future stroke, however, after adjusting for vascular risk factors suggest that SBIs reflect either an overall effect of uncontrolled vascular risk factors better than the presence or absence of each individual factor or that other, yet unknown, factors play a role in the association with stroke and dementia. These unknown factors may include underlying chronic infection, measured by procalcitonin, or subclinical cardiac disease, measured by MR-proANP.

Recent findings in patients with cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) suggest that mechanisms of SBI and white matter hyperintensities are intimately connected. Recent findings in patients with cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) suggest that mechanisms of SBI and white matter hyperintensities are intimately connected. Recent findings in patients with cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) suggest that mechanisms of SBI and white matter hyperintensities are intimately connected.

Silent brain infarction serves as an imaging biomarker of vascular brain health. SBI has been associated with traditional vascular risk factors, as well as with future clinical stroke, cognitive decline, and dementia. The independent association of SBI with future stroke, however, after adjusting for vascular risk factors suggest that SBIs reflect either an overall effect of uncontrolled vascular risk factors better than the presence or absence of each individual factor or that other, yet unknown, factors play a role in the association with stroke and dementia. These unknown factors may include underlying chronic infection, measured by procalcitonin, or subclinical cardiac disease, measured by MR-proANP.

Recent findings in patients with cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) suggest that mechanisms of SBI and white matter hyperintensities are intimately connected. In these patients, the majority of incident lacunes developed proximal to a white matter hyperintensity along the course of perforating vessels supplying the respective brain region. With the caveat that not all SBI or WMH defined by MRI are definitely of vascular origin, this finding provides indirect evidence that both imaging markers are good surrogates of small
vessel disease, including consecutive overt strokes and eventually vascular dementia.

Procalcitonin was first shown in the early 1990s to be a sepsis-induced protein detectable in patient plasma. Currently, procalcitonin is used to guide antibiotic use in patients with lower respiratory tract infections. If procalcitonin concentrations are >0.5 µg/L, acute bacterial pneumonia is very likely, and antibiotic treatment is strongly recommended. Procalcitonin synthesis and secretion are upregulated by lipopolysaccharides and certain bacteria-specific proinflammatory mediators (eg, interleukin-1β, tumor necrosis factor-α, and interleukin-6) and are downregulated as concentrations of these substances decrease during recovery from infection. Interestingly, a polymorphism in the gene encoding the monocyte receptor for bacterial lipopolysaccharide (CD14) was specifically associated with large atherosclerotic and small vessel stroke, but not other types of stroke. In a pilot case-cohort analysis in NOMAS, we found an association of procalcitonin with stroke risk, and in particular with small vessel stroke. The biological role of procalcitonin in vivo at low concentrations in stroke-free people has to date been largely unexplored. On the basis of our data from this and our previous analysis, we propose that even low concentrations of procalcitonin may reflect ongoing subclinical inflammatory processes triggered by bacterial endotoxins, which, in turn, contribute to the small vessel damage that causes some SCVD, as well as overt small vessel stroke.

Brain natriuretic peptide (BNP) and N-terminal pro-B-natriuretic peptide (NT-proBNP), as members of the family of the natriuretic peptides, have also been associated with incident stroke in some studies, as well as with WMH and SBI in the ARIC (Atherosclerosis Risk in Communities) study. In addition, higher NT-proBNP concentrations were prospectively associated with increased incident SBIs and WMH progression >8 years of follow-up. Our search did not reveal previous studies of MR-proANP, another member of the family of the natriuretic peptides, in relation to SBI or WMHV.

Concerning mortality in patients with chronic heart failure, MR-proANP outperformed BNP and NT-proBNP. The proportion of explained variance showed that MR-proANP (4.36%) was a significantly stronger predictor of death than either NT-proBNP (2.47%, P < 0.0001) or BNP (2.42%, P < 0.0001). Both a new assay technology and the high biological stability of MR-proANP are potential explanations for these findings. The pathophysiological mechanism explaining the independent associations of MR-proANP with SBI and to a lesser extent with WMHV in our study needs confirmation. We hypothesize that high MR-proANP concentrations indicate the presence of underlying early atrial pathology, thus leading to silent strokes, but only to a slight increase in WMHV, which is less likely to have exclusively a cardioembolic pathogenesis and could also reflect effects, such as relative hypoperfusion primarily based on other pathomechanisms. White matter lesions can occur with acute and also chronic cerebral
Table 2. Association of Biomarkers With Silent Brain Infarcts

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unadjusted, OR (95% CI)</th>
<th>Model 1, OR (95% CI)*</th>
<th>Model 2, OR (95% CI)†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procalcitonin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First quartile</td>
<td>Reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second quartile</td>
<td>1.5 (0.9–2.6)</td>
<td>1.4 (0.8–2.4)</td>
<td>1.4 (0.8–2.4)</td>
</tr>
<tr>
<td>Third quartile</td>
<td>1.4 (0.9–2.4)</td>
<td>1.3 (0.7–2.2)</td>
<td>1.2 (0.7–2.2)</td>
</tr>
<tr>
<td>Fourth quartile</td>
<td>2.4 (1.5–4.0)</td>
<td>1.9 (1.1–3.2)</td>
<td>2.2 (1.3–3.7)</td>
</tr>
<tr>
<td>MR-proANP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First quartile</td>
<td>Reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second quartile</td>
<td>1.3 (0.8–2.4)</td>
<td>1.4 (0.8–2.6)</td>
<td>1.5 (0.8–2.8)</td>
</tr>
<tr>
<td>Third quartile</td>
<td>2.3 (1.4–4.0)</td>
<td>2.0 (1.1–3.6)</td>
<td>1.9 (1.1–3.6)</td>
</tr>
<tr>
<td>Fourth quartile</td>
<td>4.0 (2.4–6.7)</td>
<td>2.8 (1.5–5.2)</td>
<td>3.3 (1.7–6.3)</td>
</tr>
</tbody>
</table>

CI indicates confidence interval; OR, odds ratio; and MR-proANP, midregional proatrial natriuretic peptide.

*Model 1: adjusted for age, sex, race/ethnicity, education, and insurance status.
†Model 2: adjusted for covariates in Model 1 plus physical activity, smoking status, moderate alcohol consumption, cardiac disease, diabetes mellitus, systolic and diastolic blood pressures, low-density lipoprotein, high-density lipoprotein, and estimated glomerular filtration rate.

Table 3. Association of Top Quartile of Procalcitonin and MR-proANP With Log-Total White Matter Hyperintensity Volume

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Univariate Analysis Parameter Estimate (95% CI)</th>
<th>Model 1 Parameter Estimate (95% CI)*</th>
<th>Model 2 Parameter Estimate (95% CI)†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procalcitonin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First quartile</td>
<td>Reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second quartile</td>
<td>0.20 (0.04 to 0.35)</td>
<td>0.08 (−0.06 to 0.22)</td>
<td>0.09 (−0.06 to 0.23)</td>
</tr>
<tr>
<td>Third quartile</td>
<td>0.31 (0.15 to 0.46)</td>
<td>0.21 (0.06 to 0.35)</td>
<td>0.19 (0.05 to 0.34)</td>
</tr>
<tr>
<td>Fourth quartile</td>
<td>0.52 (0.37 to 0.68)</td>
<td>0.29 (0.15 to 0.44)</td>
<td>0.29 (0.13 to 0.44)</td>
</tr>
<tr>
<td>MR-proANP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First quartile</td>
<td>Reference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second quartile</td>
<td>0.08 (−0.07 to 0.23)</td>
<td>−0.02 (−0.16 to 0.13)</td>
<td>−0.03 (−0.17 to 0.12)</td>
</tr>
<tr>
<td>Third quartile</td>
<td>0.29 (0.14 to 0.44)</td>
<td>0.00 (−0.15 to 0.15)</td>
<td>−0.01 (−0.16 to 0.15)</td>
</tr>
<tr>
<td>Fourth quartile</td>
<td>0.74 (0.59 to 0.90)</td>
<td>0.22 (0.06 to 0.39)</td>
<td>0.18 (0.004 to 0.36)</td>
</tr>
</tbody>
</table>

CI indicates confidence interval; and MR-proANP, midregional proatrial natriuretic peptide.

*Model 1: adjusted for age, sex, race/ethnicity, education, and insurance status.
†Model 2: adjusted for age, sex, race/ethnicity, education, insurances status, physical activity, smoking status, moderate alcohol consumption, cardiac disease, diabetes mellitus, systolic and diastolic blood pressures, low-density lipoprotein, high-density lipoprotein, and estimated glomerular filtration rate.
Preventive interventions concerning underlying subclinical infections and heart disease on these biomarker levels. Given the multiple adverse health outcomes associated with SCVD in older individuals, these biomarker-guided interventions may have a clinically relevant impact and may be beneficial even for the prevention of both stroke and cognitive impairment.

Sources of Funding
This work was supported by the National Institutes of Health/National Institute of Neurological Disorders and Stroke (R01 NS 29993 [RLS/MSVE]), the Swiss National Science Foundation (P2Z0P3_142422 [Dr Katan]), and the Fondation Leducq (CDA [Dr Katan]).

Disclosures
Dr Katan received in 2009—for a project unrelated to this study—a research grant from BRAHMS/Thermo Fisher Scientific, which markets the assays tested in this study. Dr Gutierrez received funding from the National Institutes of Health (NIH)/National Institute of Neurological Disorders and Stroke (NINDS) and compensations from Pfizer unrelated to this study. Dr Wright received research support from the NIH/NINDS. Dr Elkind received compensation for consultative services (Biotelemetry/Cardionet, BMS-Pfizer Partnership, Boehringer-Ingelhein, Sanofi-Regeneron Partnership); received research support from the NIH/NINDS; has given expert legal opinions on behalf of Merck/Organon (NuvaRing and stroke litigation), BMS-Sanoﬁ Partnership (Plavix and stroke litigation), and Hi-Tech Pharmaceuticals (dimethylamylamine and stroke); serves on the National, Founders Affiliate, and New York City chapter boards of the American Heart Association/American Stroke Association; and received royalties from UpToDate for chapters related to stroke. The other authors report no conﬂicts.

References
1. Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ. 2010;341:c666.

Procalcitonin and Midregional Proatrial Natriuretic Peptide as Biomarkers of Subclinical Cerebrovascular Damage: The Northern Manhattan Study
Mira Katan, Yeseon Moon, Arnold von Eckardstein, Kathartina Spanaus, Janet DeRosa, Jose Gutierrez, Charles DeCarli, Clinton Wright, Ralph Sacco and Mitchell Elkind

Stroke. 2017;48:604-610; originally published online January 25, 2017; doi: 10.1161/STROKEAHA.116.014945

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2017 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/48/3/604

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/