Fibromuscular Dysplasia and Multiple Dissecting Aneurysms of Intracranial Arteries

A Further Cause of Moyamoya Syndrome

P. Pilz, M.D.,* and H. J. Hartjes, M.D.†

SUMMARY A 16-year-old boy, who had sudden left-sided hemiplegia, died two weeks following onset of symptoms. A right carotid angiogram showed stenosis at the termination of the internal carotid artery. The middle cerebral artery had a beaded appearance and some of its branches were occluded. A basal "moyamoya" syndrome and transdural anastomoses were present. At autopsy, multiple intracranial dissecting aneurysms were found. Arteries of the body displayed fibromuscular dysplasia (FMD). The relevance of dysplastic changes of intracranial arteries and the relationship to moyamoya syndrome are discussed.

Fibromuscular Dysplasia and Multiple Dissecting Aneurysms of Intracranial Arteries

Acknowledgment

The author is indebted to the members of the Pathology Service, the Methodist Hospital for assistance in procuring arterial specimens, to Dr. Richard L. Jackson for providing purified apoproteins and their respective antibodies, and to Carol L. Heideman for providing excellent technical assistance.

References

*Neurological Department and †Radiological Department, Landes-neuropädiatrischen Poliklinik Salzburg, Ignaz-Harrer-Str. 79, Salzburg, Austria.
FIGURE 1A. Right carotid angiogram: The cervical part of the internal carotid shows regular corrugation (stationary waves). The termination of the internal carotid and the proximal part of the middle and anterior cerebral artery have a beaded appearance. Branches of the middle cerebral artery are occluded. A moyamoya-like flush of the basal ganglia is present. The lenticulostriate arteries are prominent.

FIGURE 1B. Right carotid angiogram: Stenosis of the supraclinoidal part of the internal carotid (C2) and occlusion of a main branch of the middle cerebral artery. A basal moyamoya syndrome and early filling of the internal cerebral veins are present.

FIGURE 1C. Right carotid angiogram: Transdural anastomoses are present. The middle cerebral artery shows multiple stenoses. The lenticulostriate arteries are very prominent.

lined very well. There was early filling of the internal cerebral veins (figs. 1A and B).

Transdural anastomoses were present in two regions. The parietal branch of the superficial temporal artery seemed to communicate with the peripheral part of the callosomarginal artery, which filled in a retrograde fashion. Another anastomosis was present between the middle meningeal and fronto-opercular arteries (fig. 1C).

The isotope brain scan did not show any significant uptake. Immunoelectrophoresis and direct Coombs test were normal. The Wassermann reaction of the blood serum was negative. The patient was treated with rheomacrodex and dexamethasone but his condition did not change. He died suddenly two weeks after the onset of hemiparesis.

The postmortem examination was performed 30 hours following death. The organs in the trunk were normal. When the internal carotid arteries in the neck were opened, there was slight undulation of the intimal surface. The renal arteries were not stenosed. The brain weighed 1,470 gm. The right cerebral hemisphere was soft in consistency and was much larger than the left. The right cerebral convolutions were flattened. The arteries at the base of the brain were thinner than normal. The right anterior, middle and...
posterior cerebral arteries had the appearance of a string of beads, and seemed to be occluded by a thrombus. The wall of the supraclinoidal part of the internal carotid arteries was thickened and had a cartilaginous consistency, more marked on the right side which was thought to be occluded. No berry aneurysm of the intracranial arteries was found. The right uncus herniated through the tentorium cerebelli. The brain was cut coronally. There were swelling and softening of the right cerebral hemisphere: the frontal, temporal and parietal regions were affected. The midline structures were displaced 2 cm to the left. The head of the caudate nucleus, parts of the internal capsule, the medial part of the lentiform body, and the lateral part of the thalamus showed an older infarct and shrinkage, and the vessels in these regions were prominent.

The tissue was fixed in neutral 10% formalin saline and embedded in paraffin. The brain, myocardium, liver, spleen and kidneys were examined and particular attention was given to the following arteries: aorta, renal, femoral, carotid, middle meningeal, basilar, vertebral and anterior, middle and posterior cerebral. Sections were stained by hematoxylin-eosin, cresyl violet, Cluver Barrera, Weigert’s elastic, Azan and Berlin Blue.

Some proliferation of vasa vasorum in the aorta was noted. Longitudinal sections of the right internal carotid artery in the neck showed corrugation of the wall (figs. 2 A–D). In these regions either fibroelastic intimal cushions or attenuation of the medial coat were present. There were multiple interruptions and calcification in the internal elastic lamina. There was marked loss in elastic fibers of the media. Increase of metachromatic ground substance and fibroblasts were found between smooth muscle cells. The ground substance contained many vacuoles. Some muscle cells showed large, dark, distorted nuclei. Similar changes occurred in the renal and femoral arteries. In addition, the right carotid siphon showed a stenosis which was due to muscular hyperplasia of the medial coat (fig. 3A). In the left carotid siphon large intimal cushions were found (fig. 3B). A dissecting aneurysm was present in the terminal part of the right internal carotid artery (fig. 4). Serial sections of this part of the artery showed multiple folds of internal elastic lamina which were separated from the medial coat; endothelial cells lined both aspects of the elastic lamina, but no rupture was found in the intima in the numerous sections examined from this region.

Recent dissections were present in branches of the right anterior, middle and posterior cerebral arteries, and the original lumen was compressed (fig. 5A). In addition, main branches of the right anterior and middle cerebral arteries presented older dissections which showed organization and endothelialization of the false lumen (fig. 5B). Dissection was discontinuous and resulted in repeated attenuations of the lumen in longitudinal sections (fig. 6). Proliferation of mesenchymal cells and abundant metachromatic ground substance occurred adjacent to the external surface of the internal elastic lamina. Cellular bridges permeated the blood in the dissecting aneurysm and sometimes these cells formed sinusoidal channels (fig. 6). A rupture was found in the internal elastic of a main branch of the middle cerebral artery and endothelial cells had proliferated and covered the edges of the ruptured elastic (fig. 7A). Two lumina were present in some of the small perforating basal arteries (fig. 7B). A
dissecting aneurysm was present in an intracerebral artery in the right lentiform nucleus. The following dysplastic changes were noted throughout all intracranial arteries (figs. 3B, 7A, and 7C): large fibroelastic intimal cushions sometimes containing smooth muscle cells, thickening and splitting of the internal elastic lamina, irregular arrangement of muscle fibers, attenuation and defects of the medial coat, fibroplasia between the internal elastic lamina and the media, and fibrous thickening of the adventitia. Both middle meningeal arteries showed fibroelastic thickening of the intima. Extensive infarction had occurred in the corpus striatum, globus pallidus, lateral thalamus and white matter on the right side.

The infarcted regions showed proliferation of the capillaries and were infiltrated by fat granule cells. Foci of disseminated infarcts of similar appearance occurred in the hypothalamus and the cortex of the frontal, temporal and parietal regions of the right hemisphere. Extensive recent in-
Figure 6. The right middle cerebral artery presents a dissecting aneurysm which periodically varies in its extension. Sinusoidal channels are present in the dissected area. Weigert’s elastic. X42.

Fibroplasia and severe edema also occurred in the right hemisphere. An increase in the number of vascular channels was particularly marked in the basal ganglia on the right side. Many of the vessels showed cuffing by lymphocytes.

Significant changes were not found in the myocardium, lungs, spleen and kidney. The liver showed some fatty infiltration.

Discussion

The main morphological findings were dissecting aneurysms limited to the intracranial arteries and arterial dysplasia which was generalized. The main arteries of the right cerebral hemisphere were occluded by recent dissecting aneurysms and the resulting massive infarction accounted for the sudden death of the patient. Most occlusions were not present at arteriography one week earlier. Other dissecting aneurysms at different stages of organization were present in branches of the middle and anterior cerebral arteries.

It is assumed that some blood flow was present in the false lumen of the dissected arteries since the blood was not clotted; in addition, there was no breakdown of hemoglobin, and some arteries had two patent lumina. Dissection was not distributed equally over the arterial wall. The internal elastic lamina was still fixed to the medial coat in many

Figure 7A. The right middle cerebral artery exhibits a large intimal cushion which shows splitting of the intima (to the left). The internal elastic lamina is ruptured (arrow). Weigert’s elastic. X27.

Figure 7B. A small perforating basal artery has two lumina. Hematoxylin and eosin. X90.

Figure 7C. Fibroplasia between the internal elastica and the media is seen in a small artery of the island of Reil. Cresyl violet. X90.
places, which is shown in figure 6. The dissection resulted in multiple stenoses of the lumen and showed the beaded radiological and macroscopic appearance.

Dissecting aneurysms of the intracranial arteries are rare but are well documented in the literature as a cause of sudden hemiplegia in young subjects, with angiography demonstrating occlusion or stenosis of the intracranial arteries in these cases. As in the present case, dissection occurs always between the internal elastic lamina and the media. Discontinuous dissection and early organization so far have not been reported.

The changes in large extracranial arteries are compatible with fibromuscular dysplasia and are most pronounced throughout the internal carotid artery. Dysplastic changes also were found in the intracranial arteries of the carotid and verteobasilar systems. But what do the dysplastic changes mean? Hassler described them as physiological changes in newborn and healthy young individuals, but other authors regard them as pathological and related to arteriosclerosis. The following arguments favor the view that the changes in intracranial arteries are part of a generalized arterial disorder.

1. The intracranial dissecting aneurysms showed rupture of the intima adjacent to an intimal cushion where the media was defective.
2. Also, in cases of intracranial dissecting aneurysms the arteries of the body show foci of medial necrosis and of fragmentation of the elastica.
3. In patients with berry aneurysms of the intracranial arteries the fibroelastic intimal cushions and defects of the media are larger and more frequent than normal.
4. Intracranial berry aneurysms occur frequently in patients with fibromuscular dysplasia of the renal and carotid arteries.

We assume that berry aneurysms and dissecting aneurysms of intracranial arteries are different manifestations of the same underlying disorder. However, clear-cut criteria are lacking which would separate relevant dysplastic changes of intracranial arteries from incidental or even physiological findings. The relation of medial degeneration and fibromuscular dysplasia also has not been elucidated.

There are three reports on intracranial fibromuscular dysplasia and they are based on the beaded appearance of the arteries in the angiograms in analogy to the observations in the renal and internal carotid arteries; they were not confirmed by autopsy. In another case there was histological "evidence" in intracranial arteries, but the authors emphasized that the changes were "infraradiological" and the angiogram appeared to be normal. In our case the beaded appearance of the right middle cerebral artery was due to the peculiar form of a dissecting aneurysm. In addition to the dissecting aneurysm, fibroplasia between the internal elastic lamina and the media was the only finding which was sufficient to account for stenosis of an intracranial artery (fig. 7C), but this finding was more likely due to organization of a dissecting aneurysm rather than to primary fibroplasia. The beaded angiographical appearance of the right internal carotid artery in the neck displayed stationary waves. At autopsy this artery showed definite pathological changes (fig. 2). These findings favor the suggestion of Bergquist et al. that stationary waves may be the precursor of fibromuscular dysplasia. The radiological and morphological findings in the right hemisphere are compatible with the changes found in the moyamoya syndrome except that in this case the changes were unilateral. A radiological appearance very similar to that seen in the moyamoya syndrome may occur in occlusion of the middle cerebral artery in children, due to hypertrophy of the striate branches. This might be the more likely explanation of the present case.

Acknowledgment

We thank Professor J. Thurner for granting permission to publish the data presented in this paper.

References

Fibromuscular dysplasia and multiple dissecting aneurysms of intracranial arteries. A further cause of Moyamoya syndrome.

P Pilz and H J Hartjes

*Stroke.* 1976;7:393-398
doi: 10.1161/01.STR.7.4.393

*Stroke* is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1976 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/7/4/393

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at:
http://stroke.ahajournals.org/subscriptions/