SUMMARY In a case of fatal cerebral embolic infarction follow-
ning aorto-coronary bypass graft (ACBG) surgery, postmortem ex-
amination revealed thrombosis of the vein grafts to the left circumflex
and left anterior descending coronary arteries. Contiguous with the
thrombus in the graft to the circumflex artery was thrombotic
material adherent to the aortic sutures and extending several milli-
 meters into the lumen of the aorta. A nonadherent thrombus of
similar histologic character was found in the right middle cerebral
artery, associated with localized brain infarction. In addition to the
risks of cerebral complication associated with other types of open-
heart surgery, the location of the vein grafts in patients undergoing
ACBG operations seems to offer a unique mechanism for the oc-
currence of systemic and cerebral embolism, which may be
operational in other cases.

CEREBRAL COMPLICATIONS constitute a major
hazard of open-heart surgery for repair of congenital abnor-
malities or valve replacement. One retrospective study of
417 cases indicated that 19.2% of patients had impairment of
consciousness, voluntary movement, or vision within the
first three postoperative days.1 Prospective studies
specifically searching for neurologic abnormalities suggest
the rate to be even higher: Tufo et al.2 reported their
presence in 44% of patients surviving the operative period.
Operative mortality in their series was 15%, and it is likely
that cerebral complications contributed to that mortality.

In contrast, the incidence of cerebral complications
following aorto-coronary bypass graft (ACBG) surgery is
reported to be quite low. Assad-Morell et al.3 mentioned
only one instance of neurologic abnormality (cerebral in-
farction) in their follow-up of 500 patients from 18 to 42
months after surgery, and Sheldon and Grinfeld4 made no
mention of neurologic complications in any of their 300
patients followed up for 21 to 46 months. This is surprising,
because — although the risk of air embolism is much less
during ACBG operations — other pathogenetic mechanisms
implicated in the production of cerebral symptoms during
open-heart surgery (i.e., hypotension, electroencephalographic
monitoring, and use of Millipore filters) to reduce the incidence of cerebral injury
at operation, the reported incidence of cerebral com-
plings following open-heart surgery in one series still is
7.4%.5

The following case is an example of fatal cerebral em-
bolism following ACBG surgery and illustrates a patho-
genic mechanism, unique to this type of surgery, which
may be operational in other cases.

Report of Case

In April 1975, a 45-year-old white man was admitted to
the Mayo Clinic for evaluation of intractable angina pec-
toris. All results of a complete physical examination and
routine laboratory studies, including electrocardiography,
were normal. The patient was admitted to the hospital,
where coronary angiography showed widespread moderately
severe disease. The right coronary artery was occluded at the
junction of the proximal and middle thirds, and the marginal
branch of the left coronary was narrowed by 60% to 70% at
its origin and by 70% to 80% more distally. The main left
antero descending branch was normal; but the continuing
portion was narrowed by 90% and 85% at two places, the
distal segment being normal.

An ACBG procedure was performed, which included
saphenous-vein grafts from the aorta to the distal right cor-
ony, left anterior descending, and left circumflex arteries.
Total pump time was 132 minutes. No complications were
noted during the procedure or in the immediate
postoperative period. Intermittent heparin was given in-
travenously as a routine precaution against peripheral
venous thromboembolism.

On the eighth postoperative day, the patient noted the
onset of left-sided visual field loss, which was defined by
perimetric testing as left inferior quadrantanopia (fig. 1). In-
travenous administration of heparin was continued, and no
further symptoms were noted until postoperative day 13,
when left hemiparesis developed and progressed rapidly to
hemiplegia, accompanied by a progressive decline in level of

From the *Department of Neurology, the †Section of Thoracic, Car-
diovascular and General Surgery, and the Clinical Cerebrovascular Research
Center, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55901.
This investigation was supported in part by Research Grant NS-6663, Na-
tional Institutes of Health, Public Health Service.
Reprint address: Dr. J V. Bounds, Jr., c/o Section of Publications, Mayo
Clinic, 200 First Street SW, Rochester, Minnesota 55901.

Aorto-Coronary Bypass Graft Surgery

JAMES V. BOUNDS, JR., M.D.,* BURTON A. SANDOK, M.D.,*
AND DONALD A. BARNHORST, M.D.†
consciousness. Computerized transaxial tomography showed decreased density of a large portion of the right cerebral hemisphere (fig. 2) and a marked shift of midline structures. The findings were thought to be indicative of a large cerebral infarct with associated edema. Despite intravenous administration of dexamethasone and glycerol, the decrease in the level of consciousness continued. Signs of uncal herniation became evident, and death occurred 24 hours after the onset of the hemiparesis.

Postmortem examination revealed thrombosis of vein grafts to the left circumflex and left anterior descending coronary arteries. Contiguous with the thrombus in the graft to the left circumflex artery, there was thrombotic material adhering to the aortic sutures and extending several millimeters into the lumen of the aorta (fig. 3). The chambers of the heart were devoid of thrombus, and there was no evidence of recent myocardial infarction.

Examination of the cerebral blood vessels revealed a large non-adherent thrombus in the right middle cerebral artery just proximal to its trifurcation (fig. 4). The cerebral thrombus was similar in gross appearance to that at the orifice of the vein graft (fig. 5). The remainder of the cerebral blood vessels showed only mild atherosclerotic narrowing; there was no evidence of ulcerated atherosclerotic plaques in the extracranial vessels.

Examination of the brain parenchyma showed most of the right hemisphere to be softened by infarction (fig. 6).

Light microscopy confirmed the histologic similarity between the thrombus extending from the vein graft and that in the middle cerebral artery. In addition, the typical non-adherent character of the distal clot indicated its probable embolic origin.

Comment

This case is an example of fatal cerebral embolism occurring after ACBG surgery and illustrates a general mechanism of thromboembolism that seems a possibility in many post-ACBG patients. In addition to the risks of
Cerebral complication associated with other types of open-heart surgery, the location of the vein grafts in these patients appears to offer considerable opportunity for systemic and cerebral embolism. The graft is sewn directly into the aorta, and the suture line is a possible site for thrombus formation. In addition, because the vein-graft lumen is in direct continuity with the aortic lumen, a thrombus forming within the vein could easily gain access to the systemic circulation by retrograde propagation to the vein-aorta anastomosis.

A carefully designed prospective study by Grondin et al. has shown the one-year graft occlusion rate to be 20.4%. In view of this significant frequency of occlusion, it is somewhat surprising that more of these thrombi do not extend proximally and eventually give rise to emboli.

We believe that a more critical evaluation is needed — in the form of a prospective study of neurologic function following ACBG surgery — to ascertain the true incidence of cerebral complications following this procedure. In addition, postmortem examination in cases with cerebral infarction must include not only study of the cerebral vasculature but also a search for the pathogenetic mechanism responsible for the brain lesion. In the meantime, we urge physicians to be aware of the possibility of cerebral embolism that must exist in some post-ACBG surgery patients.
Angiographical Extravasation of Contrast Medium in Hemorrhagic Infarction

Case Report

TADAYOSHI IRINO, M.D., MAMORU TANEDA, M.D., TAKAO MINAMI, M.D., AND YOSHIO MURATA, M.D.*

SUMMARY Leakage of the contrast medium was noted on angiograms of a patient whose autopsied brain disclosed typical pathological findings of hemorrhagic infarction. The case was a 63-year-old woman with mitral valve failure, who suddenly had loss of consciousness and right-sided hemiplegia. The left carotid angiography performed six hours after onset demonstrated middle cerebral arterial axis occlusion, and the second angiography performed three days after onset displayed recanalization of the initially occluded artery as well as extravasation of the contrast medium. Fourteen days after onset the patient died and an autopsy was performed. The brain demonstrated perivascular punctate hemorrhages in the area supplied by the middle cerebral artery, and neither hematoma nor microaneurysm was disclosed pathologically.

A short discussion is given on the possible relationship between recanalization and hemorrhagic infarction. The clinical assessment of hemorrhagic infarction has not been established successfully.

ANGIOGRAPHICAL EXTRAVASATION of the contrast medium in various kinds of intracranial hemorrhagic lesions has been reported previously by many authors regarding cases of hypertensive intracerebral hemorrhage,1 ruptured aneurysm,2 or arteriovenous malformation,3 and epidural hematoma.* However, as yet, no cases have been described concerning angiographical extravasation in patients with occlusive cerebrovascular diseases, in spite of the fact that hemorrhagic infarction develops frequently in the clinical course of such patients.8 The present case demonstrated leakage of the contrast medium on the angiograms obtained after spontaneous recanalization of the occluded middle cerebral arterial axis, and the autopsied brain displayed typical hemorrhagic infarction in the infarcted area. We believe this case represents the first angiographical demonstration of extravasation in hemorrhagic infarction.
Fatal cerebral embolism following aorto-coronary bypass graft surgery.
J V Bounds, B A Sandok and D A Barnhorst

Stroke. 1976;7:611-614
doi: 10.1161/01.STR.7.6.611

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/7/6/611

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/