Letters to the Editor

Altitude & CBVD Death Rates
Show Apparent Relationship

To the Editor:

The Nationwide Cerebrovascular Disease Mortality Study1 has provided evidence that regional differences in reported death rates due to cerebrovascular diseases are real, and not artifacts resulting from regional differences in diagnostic or reporting practices. We undertook to test a hypothesis suggested by that study: "Generally, the rates are . . . lowest in the Midwest and Rocky Mountain areas." Since chronic acclimatization to altitude results in numerous physiologic and biochemical changes,2 and appears to induce an increase in resistance to the deleterious effects of acute hypoxia,3 it seemed reasonable to us to consider the possibility that residence at higher altitudes might somehow affect the risk of death due to cerebrovascular diseases.

For each of the 229 Standard Metropolitan Statistical Areas (SMSA's) defined by the 1970 Census of the United States, we found the altitude in feet above mean sea level for the principal city, from available published information.4 Through the courtesy of Mr. Michael J. Zugzda, Chief, Statistical Resources Branch, Division of Vital Statistics, we obtained unpublished data of the National Center for Health Statistics which tabulated cerebrovascular disease deaths and death rates for each SMSA by age, sex, and race for the period 1969-1971. Cerebrovascular diseases included categories 430 through 438 of the International Classification of Diseases, 8th revision. Because the actual racial composition of the non-white group might vary markedly from region to region, we omitted these data from the computations which followed.

For each SMSA we computed a standardized mortality ratio (SMR), using data for whites of both sexes in the age groups 55-64 and 65-74 years. This was done by dividing the total observed number of deaths by the number that would have been expected if the overall death rates for the 229 SMSA's, pooled, had applied to the individual SMSA. We then performed simple correlation and least-squares linear regression analyses to test the hypothesis that altitude and SMR were related.

The correlation coefficient between SMR and altitude proved to be −0.14, which, with 229 data points, corresponds to a statistical significance level p < 0.05. The point estimate of the regression coefficient was −0.025 per thousand feet, with 95% confidence limits of −0.002 and −0.048.

It would be presumptuous to speculate on a mechanism by which altitude of residence might affect cerebrovascular disease death rates, as the possibilities are so numerous and so complex, and our information is so limited. Even by using the SMR, we cannot claim to have eliminated completely possible effects of differences in composition of the population at different altitudes. Rather, it would seem useful to urge that this hypothesis be tested again in other locations and at other times. Countries where part of the population resides at altitudes higher than those found in the United States might provide particularly valuable information. We offer these findings in the hope that they will stimulate the interest of other investigators.

Robert S. Gordon, Jr., M.D.
Special Assistant to the Director
National Institutes of Health
Bethesda, Maryland 20014

Harold A. Kahn, M.A.
Department of Epidemiology
Johns Hopkins School of Hygiene and Public Health
615 North Wolfe Street
Baltimore, Maryland 21205

Sandra Forman, M.A.
Department of Social and Preventive Medicine
University of Maryland School of Medicine
600 Wyndhurst Avenue
Baltimore, Maryland 21210

References
Altitude and CBVD death rates show apparent relationship.
R S Gordon, Jr, H A Kahn and S Forman

Stroke. 1977;8:274
doi: 10.1161/01.STR.8.2.274
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1977 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/8/2/274.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/