CAROTID ARTERY bifurcation endarterectomy is now well established in the treatment of patients with monocular or hemispheric transient cerebral ischemic attacks. Conversely, it is also thought that carotid surgery is contraindicated for patients with acute severe strokes because of the risk of making the neurological deficit worse. However, a small percentage of patients have thromboembolic cerebral ischemia manifested by unstable neurological deficits of only mild to moderate degree. There is no consensus on the approach to these patients, but many neurologists and vascular surgeons have considered them as acute strokes and avoided angiography and surgery. Dissatisfied with the outcome in several such patients, we have recently adopted a more aggressive plan of management. The purpose of the present report is to describe this approach and the successful results of its use.

Definitions

The following definitions, adapted from the Handbook of Clinical Neurology,1 have been used:

Transient ischemic attacks — Cerebral hemispheric or monocular episodes of transient ischemia, usually lasting a few minutes to a few hours, leaving no residual signs and symptoms between attacks. Crescendo transient ischemic attacks are those attacks abruptly increasing in frequency to at least several per day.

Stroke in evolution — Several symptom patterns can be included in this term, which is also known as progressing stroke or incomplete stroke. An acute neurological deficit of modest degree may, within hours or days of the initial event, progress in a sequential series of acute exacerbations to a major stroke. Alternatively, after the initial episode the neurological deficit may improve temporarily, only to reappear later, often with more widespread involvement, leading to a pattern of waxing and waning of signs and symptoms that occurs over hours to days with an incomplete recovery.

Clinical Material

In the past three years approximately 180 patients have undergone carotid thromboendarterectomy at the San Francisco Veterans Administration Hospital. The primary indications for angiography and operation were transient ischemic attacks (hemispheric or monocular) and asymptomatic carotid artery stenosis in patients requiring other major cardiovascular surgery. During the same time period 26 patients were encountered who underwent emergency evaluation, including angiography and emergency carotid endarterectomy. The indications for emergency arteriography in this group were crescendo transient ischemic attacks in 8 patients and stroke in evolution in 18 patients. None had severe, devastating neurological deficits or depressed levels of consciousness.

Angiographic Management

All patients underwent carotid arteriography via the transfemoral route, using the Seldinger technique and rapid film changer. In several of the patients, the studies were incomplete because the procedure was terminated once a critical arterial lesion was identified. Thus, often only one carotid artery was examined, but in all cases at least two projections of the neck vessels and ipsilateral intracranial vessels were taken. Selective carotid injections using small catheters and small amounts of contrast medium are important details of the angiographic management of these cases. Injections to visualize the vertebral arteries and the aortic arch are no longer performed routinely. None of the patients in this series suffered any complications from arteriography.

For the purposes of this report, a critical arterial lesion was defined as one producing a 95% or greater reduction in the diameter of the internal carotid artery or one that was associated with a thrombus (intraluminal filling defect) seen on arteriograms to be freely floating within the lumen of the vessel. These preocclusive and thrombotic lesions are believed to be unstable because of their propensity to become totally occluded or to embolize. Each of the 26 patients in this surgical series had such a critical or unstable arterial...
lesion appropriate to the side of the cerebral symp-
toms. Atherosclerosis was the etiology in each case.
An angiographic example of one of the arterial lesions
is shown in fig. 1.

Management

Because of unstable neurological symptoms, the
clinical evaluation of each of the patients in this series
was done on an urgent basis, including emergency
carotid arteriography. All of the stroke-in-evolution
patients received heparin anticoagulation prior to
angiography, and the remainder received it as soon as
the critical arterial lesion was identified. Emergency
carotid bifurcation endarterectomy was then per-
formed as soon after completion of angiographic
studies as possible.

The surgical and anesthetic management used in
these cases has been well described in previous
publications and includes general anesthesia
(Halothane) and maintenance of normal arterial Pco₂
and preoperative blood pressure. Our usual practice is
to use a temporary internal shunt during carotid en-
darterectomy only in selected patients, namely, in
those whose internal carotid artery back pressure is
below 25 mm Hg (under conditions of normocarbia
and normotension) and in those who have had a
previous cerebral infarction on the side of operation
regardless of the level of carotid back pressure. In con-
formity with this policy, a shunt was used in 2 of the 8
patients with crescendo transient ischemic attacks
because of low back pressure and in all 18 patients in
the stroke-in-evolution group because of inability to
exclude the presence of cerebral infarction. In-
trooperative arteriograms at the conclusion of each
procedure confirmed a satisfactory technical result.

Results

Eight of the 26 patients in this series had crescendo
transient ischemic attacks. Eighteen had stroke in
evolution, of whom 10 exhibited the slowly progressive
pattern and 8 the waxing and waning or stuttering
onset pattern. As noted above, each had a critical
arterial lesion at the carotid bifurcation appropriate to
the symptoms. Each of the 26 patients made a
dramatic, complete, and so far permanent neuro-
logical recovery following operation. There was no
morbidity from either the angiographic or surgical
procedures.

Discussion

Excellent results from therapeutic carotid artery
surgery can be obtained in patients with transient
hemispheric or retinal ischemic attacks whose neuro-
logical condition is stable. The 8 patients in the pres-
ent series with crescendo transient ischemic attacks,
although neurologically unstable by virtue of an
abrupt increase in the frequency of their symptoms,
can be included in this group in which nearly negligible
morbidity and mortality should be expected. On the
other hand, the surgical mortality for operations per-
formed to restore flow in an occluded carotid artery
during an acute cerebral infarction ranges from 40 to
50%. This unacceptably high figure, reported by Wylie
and associates2 as well as by the Joint Extracranial
Arterial Occlusive Disease (EAO) Study,3 forms the
basis for the belief that carotid artery operations for
acute stroke are contraindicated. Many vascular sur-
geons tend to place in the same high risk category any
patient with a neurological deficit that is not com-
pletely reversible, that is to say, not a bona fide tran-
sient ischemic attack. It has been postulated that the
mechanism responsible for the deterioration in this
situation is the restoration of flow and pressure into an
ischemic area of the brain as a result of the arterial
reconstruction thereby converting an ischemic into a
hemorrhagic infarct and eventually into a massive
hemorrhage in the area of infarction.2 It is beyond the
scope of this report to give a critical analysis of the
clinical and experimental data upon which this theory
is based. Suffice it to say, it is not incontrovertible.4
Cerebral embolization, with or without operation,
can cause hemorrhagic cerebral infarction. A number of our patients, as well as those reported by others, had a fresh soft thrombus present at the carotid artery bifurcation that could easily have dislodged and traveled downstream during the performance of an operation, and this may be as significant a factor as restoration of flow in the production of hemorrhagic infarcts. Although the occurrence of hemorrhagic infarction has been well demonstrated by several authors, most of the reported patients had acute, profound neurological deficits, totally occluded carotid arteries, and hypertension. The patients in the present series differed in that the deficits were not fixed and were of only mild to moderate severity and the arteries operated on were not occluded. In addition, we carefully monitored and controlled the blood pressure throughout the perioperative period.

The pathological correlate of acute stroke is acute cerebral infarction, and in general, the more extensive the infarction, the worse the clinical stroke. Unfortunately, the pathological process responsible for the symptoms in our patients is not known. The fluctuating deficits preoperatively and their prompt and total resolution postoperatively suggest that infarction had not occurred or, if it had, that it was small. In spite of these excellent results, we believe the risk of emergency operation in these circumstances is probably higher than is elective operation in patients who are neurologically stable. However, the risk of not operating may even be greater for the prognosis of stroke in evolution is poor. Of 204 consecutive cases reported by Millikan in 1972, 69% became hemiparetic, 5% monoparetic, 14% died, and only 12% returned to normal by 14 days after the onset of symptoms. We adopted the more aggressive approach herein described after encountering several patients in whom the usual conservative plan of management allowed progression to a severe, fixed neurological deficit.

The primary objective of treatment in patients such as these is the prevention of cerebral infarction or the worsening of infarction after the pathological process begins. Since the very nature of progressing stroke allows only a limited amount of time in which to make initial observations and start treatment, the timing of surgical intervention, when appropriate, is of the utmost importance. The reluctance of neurologists and vascular surgeons to subject neurologically unstable patients to angiography does not appear to be supported by hard data. The risk of angiography is acceptably low in hospitals with skilled and experienced radiologists. Even in the Joint EAO Study, four vessel angiography had a grave complication (stroke) rate of 0.5% over-all and only 1% in patients with severe neurological deficits. Since that study is 10 years old and was done early in the experience of most of the participating angiographers, it is reasonable to assume that the risk is even lower at the present time.

On the basis of our initial experience with a smaller group of patients, we adopted an aggressive diagnostic approach in patients whose neurological status was rapidly changing or was atypical and not readily explained. Our subsequent experience has supported this approach. It includes patients with, as defined above, stroke in evolution, waxing and waning neurological deficit, and crescendo transient ischemic attacks. Figure 2 outlines our protocol for evaluating patients with neurological instability. The diagnostic workup should proceed on an urgent basis. Lumbar puncture, brain scan (static, flow, and computerized axial tomography), supraorbital directional Doppler, oculoplethysmographic, and EEG studies may be included, but the decision for arteriography should be based primarily on the clinical course. If a critical, unstable arterial lesion is found, emergency carotid bifurcation endarterectomy should be performed. If a noncorrectable or noncritical lesion is identified, heparin anticoagulation should be initiated since it appears to be associated with a reduction in the progression of infarction in these circumstances.

We do not advocate angiography or operation in patients with severe fixed neurological deficits, especially when associated with depressed levels of consciousness. Presumably, cerebral infarction has already occurred in these individuals. Similarly, we do not advocate carotid endarterectomy to reestablish flow in occluded internal carotid arteries regardless of whether or not there are symptoms of cerebrovascular insufficiency.

References
4. Fisher CM, in discussion, Meyer JS, Mathew NT, Shimazu K: Clinical management of cerebral ischemia. In Cerebral Vascular...
Disease, Eighth Conference, McDowell FW, Brennan RW (eds), New York, Grune & Stratton, 1972, p 216

JERRY GOLDSTONE and WESLEY S. MOORE

Stroke. 1978;9:599-602
doi: 10.1161/01.STR.9.6.599

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1978 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/9/6/599.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/