High-Mobility Group Box 1 Promotes Metalloproteinase-9 Upregulation Through Toll-Like Receptor 4 After Cerebral Ischemia

Jianhua Qiu, MD, PhD; Jian Xu, MD, PhD; Yi Zheng, PhD; Ying Wei, MD; Xiaoxia Zhu, MD; Eng H. Lo, PhD; Michael A. Moskowitz, MD; John R. Sims, MD

Background and Purpose—HMGB1 is a nuclear protein and an alarmin that signals cell damage in response to injury. It is believed that after release from injured cells, HMGB1 binds to its receptors to stimulate cross-talk among cells and to drive components of the inflammatory cascade. This study was intended to investigate the role of extracellular HMGB1 in ischemic stroke by examining the response of the zymogen matrix metalloproteinase-9 (MMP-9) to HMGB1 in vivo and in vitro.

Methods—Toll-like receptor 2 (TLR2), TLR4, receptor for advanced glycation endproducts (RAGE), and MMP-9 expression was examined using quantitative RT-PCR in primary cultured neurons, astrocytes, and mouse brain after HMGB1 addition. MMP-9 expression/activity was examined using zymography. Middle cerebral artery occlusion was induced for 60 minutes using a filament model.

Results—TLR4 is constitutively expressed in neurons, astrocytes, and mouse brain. HMGB1 addition to neuronal and glial cell cultures caused MMP-9 upregulation in a dose- and time-dependent manner. Lack of TLR4 function attenuated MMP-9 expression induced by HMGB1 in vitro. After striatal microinjection of HMGB1, MMP-9 was upregulated, and the response was independent of tumor necrosis factor-α. Interestingly, MMP-9 upregulation was reduced in TLR4 missense mutant mice after ischemia compared with wild-type controls, as was infarct volume.

Conclusion—Our results suggest that HMGB1 triggers MMP-9 upregulation in neurons and astrocytes predominantly via TLR4 after cerebral ischemia. Hence, targeting HMGB1/TLRs signaling pathway may reduce the acute inflammatory response and reduce tissue damage in cerebral ischemia.

Key Words: cerebral ischemia • matrix metalloproteinase • high-mobility group box 1

Stroke is the third leading cause of death in America. Although the pathophysiological processes of stroke have been studied extensively, the mechanisms of early neurovascular dysfunction are not fully understood. After onset of arterial occlusion, ischemic injury develops rapidly in a heterogeneous manner. Many molecular mechanisms have been implicated, including excitotoxicity, ionic imbalance, oxidative and nitrosative stress, and programmed cell death pathways, comprising apoptosis, necroptosis, and autophagy. Inflammation is also broadly triggered with an elevation in cytokines and chemokines and various neurovascular proteases, including matrix metalloproteinases (MMPs). Because these cascades of ischemic pathophysiology are so complex, it has not been easy to find therapeutic approaches that are clinically effective.

Within the neurovascular unit, neurons are the most vulnerable cells to hypoxic ischemic injury. Damaged neurons can be detected in mouse models as early as 30 minutes after middle cerebral artery occlusion (MCAO). We showed previously that high-mobility group box 1 (HMGB1), a chromatin protein, is rapidly released from injured cells after ischemia. Extracellular HMGB1 is a prototypic member of the so-called alarmin family of mediators that mediate cross-talk between injured cells and relative healthy cells around damaged tissues. Released HMGB1 binds to its receptors (RAGE, toll-like receptor 2 [TLR2], and TLR4) and augments inflammation via the upregulation of tumor necrosis factor-α (TNFα), interleukin-1β, and other cytokines. Inhibition of HMGB1 by either small interfering RNA or neutralizing antibodies is neuroprotective. However, it is likely that HMGB1 may induce more than just inflammatory cytokines per se, because blockade of cytokines is not always beneficial after cerebral ischemia.

In this study, we hypothesized that HMGB1 may also act by upregulating MMP-9, a potentially deleterious neurovascular protease. A large body of experimental and clinical evidence...
implicates MMP-9 in cerebral ischemic injury. Upregulation of MMP-9 causes blood–brain barrier degradation, vasogenic edema, and hemorrhage. If HMGB1 is indeed rapidly released from sites of initial cell death after cerebral ischemia, it would serve as a logical candidate for upregulating MMP-9 and hence expanding the areas of brain damage after stroke. Here we use a combination of neural cell cultures and in vivo mouse models of focal cerebral ischemia to test this hypothesis. Our data show that HMGB1 upregulates MMP-9 in neurons and astrocytes via TLR4. In missense mutant mice with dysfunctional TLR4 signaling, MMP-9 levels and brain injury are reduced after focal cerebral ischemia.

Materials and Methods

MCAO Model

C57 black/6j, C3H/Keithj, and C3H/Hej male mice (20 to 25 g; 10 to 12 weeks old) were purchased from The Jackson Laboratory (Bar Harbor, Maine). All experiments were performed following institutionally approved protocols in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals under institutional guidelines. The filament MCAO model was used, as described previously. Animals were anesthetized with isoflurane in 70% nitrous oxide and 30% oxygen. A silicone-coated 8-0 monofilament was used to occlude the middle cerebral artery for 1 hour. After 1-hour MCAO, the filament was withdrawn for reperfusion. Temporal cerebral blood flow was monitored by laser Doppler (Perimed) to confirm occlusion and reperfusion. Rectal temperature was maintained 36.5°C to 37.5°C. The mice that died because of seizure within 1 hour after occlusion and termination of anesthesia were excluded. Infarct volume was measured 24 hours after MCAO by 2,3,5-triphenyltetrazolium chloride staining.

Cell Cultures

Primary cortical neuronal cultures were isolated from E-16 mouse embryo and cultured in NeuroBasal medium with 2% B27 (Invitrogen) on polyethyleminine-coated plates. Neurons were grown for 10 to 14 days before use. Primary mixed glial cultures were prepared from postnatal day 1 pups and cultured in DMEM with 10% FBS. Low-passage glial cells were used for our experiments.

Quantitative Real-Time RT-PCR

RNA was isolated from either cultured cells or brain tissues and treated with DNase I to remove genomic DNA. cDNA was generated by using SuperScript III kit (Invitrogen). Samples were run in triplicates, with negative controls (no cDNA). Primers and Taqman FAM–labeled probes were mixed with AmpliTaq Fast Universal PCR Master Mix (Applied Biosystems) and then diluted with double distilled water up to 25 μL. Gene-specific products were normalized to an endogenous control of 18S ribosomal RNA.

Immunostaining

Immunostaining was performed as described previously. Briefly, fresh frozen coronal brain sections were fixed with 4% phosphate-buffered paraformaldehyde. The following antibodies and dilution conditions were used: polyclonal MMP-9 antibody (1:200; Abcam), neurons were stained with neuronal nuclei (1:1000; Pharmingen), and astrocytes were stained with glial fibrillary acidic protein (1:1000; Sigma). Fluorescent-stained sections were analyzed by confocal microscopy.

Statistics

mRNA expression levels were quantified by real-time RT-PCR. mRNA amounts were then averaged by group/treatment and compared by ANOVA followed by Dunnet post hoc analysis. was considered statistically significant.

Results

HMGB1 Upregulates MMP-9 in Neurons and Astrocytes

Exposure of primary neurons and astrocytes to increasing concentrations of HMGB1 caused an upregulation of MMP-9 mRNA as measured by real-time RT-PCR (Figure 1A and 1B). This transcripational response was followed by release of MMP-9 into the extracellular space as shown by zymography on conditioned media (Figure 1C). The response in astrocytes was higher than in neurons. MMP-2 was not detected in the conditioned media and not detected after HMGB1 addition.
HMGB1 Receptors Are Present in Cultured Neurons and Astrocytes

Three putative receptors for HMGB1 have been proposed: RAGE, TLR2, and TLR4. Using real-time RT-PCR, we quantitatively examined the expression levels of these 3 receptors in primary mouse cortical neurons and astrocytes. Our data confirmed that the mRNAs for the receptors were expressed in both cell types. RAGE levels were the lowest, whereas TLR4 expression levels were the highest (Figure 2).

HMGB1-Induced MMP-9 Occurs via TLR4 Signaling

To further examine the mechanism of HMGB1-induced MMP-9 upregulation, we investigated whether TLR4 was involved. Astrocytes and neurons were isolated from the C3H/Hej mutant mouse, which expresses a loss-of-function missense mutation in third exon of Tlr4 gene. For comparison, cells were isolated from C3H/Heouj mice (wild-type control). Both wild-type and TLR4 mutant neurons and astrocytes were exposed to 100 ng/mL recombinant HMGB1 for 6 hours, and MMP-9 expression was examined by real-time PCR. HMGB1 induced a clear increase in MMP-9 in wild-type astrocytes and neurons but not in TLR4 mutant cells (Figure 3), suggesting that TLR4 signaling is required for HMGB1-induced MMP-9 upregulation.

HMGB1 Induces MMP-9 Upregulation in Brain

RT-PCR demonstrated that all 3 HMGB1 receptors (RAGE, TLR2, and TLR4) were detectable in mouse brain homogenates similar in quantity and relative expression to each other as in the culture data (Figure 4A). Once again, levels of TLR4 expression were much higher than TLR2 and RAGE expression levels. Stereotactic injection of HMGB1 directly into normal striatum caused a significant upregulation in MMP-9 in striatal homogenates (Figure 4B). This response appeared to be independent of TNFα (Figure 4C), as evidenced by a similar MMP-9 response after injections of HMGB1 in TNFα knockout and wild-type mice (Figure 4C). HMGB1 also significantly caused MMP-9 upregulation in wild-type C3H strain comparable with the response in the C57B/6 strain. Interestingly, upregulation of MMP-9 induced by HMGB1 is attenuated in TLR4 mutant mice (Figure 4D). The data are consistent with the results from in vitro experiments.

MMP-9 and Infarction Volumes Are Reduced in TLR4 Mutant Mice

To test the hypothesis that HMGB1 induces MMP-9 via TLR4 in ischemic brain injury, we subjected TLR4 mutant mice and their wild-type controls to 1-hour transient MCAO. MMP-9 levels were increased in neurons and astrocytes within ischemic tissue areas in wild-type (Figure 5A), which is consistent with the region of HMGB1 release. MMP-9 expression/activation was significantly lower in the ischemic cortex of TLR4 mutant mice compared with the wild-type controls at 2 hours after reperfusion (Figure 5B). Correspondingly, 24-hour infarction volumes were also significantly smaller in TLR4 mutant mice compared with wild-type mice (Figure 5C).

Discussion

HMGB1 belongs to a family of molecules called alarmins. Members of this family participate in cell–cell signaling to herald and respond to conditions of tissue stress. Passive release of HMGB1 from dying cells is a sign of necrotic damage. This is a broad-based phenomenon; HMGB1 has been shown to be released from neuronal cells, hepatocytes, and cardiomyocytes. In addition to passive release, actively regulated secretion of HMGB1 may also occur, but primarily in immune cells.

Extracellular HMGB1 is known to induce complex cascades of signaling via binding to its receptors, including RAGE, TLR2, and TLR4. The downstream effects are also wide ranging. HMGB1 can trigger inflammation, cardiac regeneration, and neurite outgrowth. Many of these cascades are mediated by well-conserved pathways such as mitogen-activated protein kinase, nuclear factor κB, and...
activator protein 1 transcriptional responses. In the context of stroke, these pathways may be especially relevant because they are known to upregulate MMP-9. HMGB1 release occurs as early as 30 minutes after ischemia, and MMP-9 elevations are described to take place after 6 to 12 hours. The temporal profile implicates these molecules may be related. In the present study, we showed that HMGB1 upregulated MMP-9 in cultured neurons and astrocytes, as well as in mouse brain. This phenomenon was mediated primarily through the TLR4 receptor, which was highly expressed in neuronal and astrocyte cultures as well as mouse brain. MMP-9 upregulation via HMGB1 expression was attenuated in TLR4 missense mutant neural cells compared with wild-type control cells after HMGB1 treatment. Finally, MMP-9 expression in cerebral cortex of TLR4 mutant mice was lower than wild-type controls after focal cerebral ischemia. Together, our findings suggest that after stroke onset, HMGB1 released from rapidly dying cells may bind onto constitutively expressed TLR4 receptors in adjacent brain, thus upregulating MMP-9 and expanding neurovascular damage and ischemic brain injury.

To date, 3 putative HMGB1 receptors have been reported: RAGE, TLR2, and TLR4. Baseline RAGE expression is low in brain and is inducible hours after injury. Our data showed that TLR2 and TLR4 were constitutively expressed in brain tissue and primary cultured neurons and astrocytes.

Figure 4. HMGB1 upregulates MMP-9 in mouse brain. A, Expressions of RAGE, TLR2, and TLR4 in normal C57B/6 mouse brains examined by real-time PCR. The expression level is normalized to 18S expression, y axis is a log scale. B, Recombinant HMGB1 (100 ng) or saline (control) was injected into C57B/6 mouse brain, and MMP-9 mRNA was examined 6 hours after injection by real-time PCR. The real-time PCR data are the means±SD; *P<0.01. C, Recombinant HMGB1 (100 ng) or saline control was injected into TNFα wild-type (WT) or knockout mouse brain, and MMP-9 mRNA expression was assayed 6 hours after injection by gel zymography. No significant difference was observed between wild-type and knockout mice. D, 100 ng of HMGB1 or saline (control) were injected into C3H mouse brain, and mRNA of MMP-9 was analyzed by real-time PCR; **P<0.01.

Figure 5. MMP-9 expression and infarct volume after MCAO. A, Wild-type (WT) mice were subjected to 1-hour MCAO and euthanized 6 hours after reperfusion. MMP-9 expression in cerebral cortex was examined by immunostaining. Top left image shows representative region of MMP-9 examined in neurons (neuronal nuclei [NeuN]) and astrocytes (gliarial fibrillary acidic protein [GFAP]). No significant MMP-9 expression was detected in normal brains (bottom left image). Bar=50 μm. B, MMP-9 expression examined by zymography was attenuated in cerebral cortex of TLR4 mutants (C3H/Hej) compared with wild-type mice (C3H/Heouj) after MCAO. C, Infarct volume was reduced in C3H/Hej mice examined by 2,3,5-triphenyltetrazolium chloride staining 24 hours after MCAO. Data are means±SD; *P<0.05. Cont indicates contralateral side; lpsi, ipsilateral side.
consistent with other reports. In our cell and animal models, TLR4 expression levels were highest compared with the other receptors. HMGBl-induced MMP-9 responses were mostly suppressed after blockade of TLR4 signaling. These data suggest that HMGBl can act immediately around damaged areas upon release, and TLR4 may play a predominant role in the very early phases after stroke onset. Nevertheless, it remains possible that interactions with the other receptors may be important as ischemic injury evolves. Additional studies will be required to assess these questions.

Because HMGBl can participate in so many overlapping pathways, dissecting the precise signaling pathways involved is not easy. Our findings suggest that TLR4 activation is required for MMP-9 induction and neurovascular injury. But of course, HMGBl can also induce many other cytokines such as TNFα and interleukin-1β, which may promote MMP-9 upregulation indirectly. In our study, we used TNFα knockout mice to control for one such alternate pathway. Stereotactic injection of recombinant HMGBl robustly elevated MMP-9 expression in TNFα knockout mice, suggesting that at least in mouse models, the induction of MMP-9 by HMGBl can be TNFα independent. However, the interactions between HMGBl, MMP-9, and other cytokines will have to be carefully elucidated in future studies.

Along with the downregulation of MMP-9, a significant reduction of infarct volume was observed in TLR4 mutant mice after focal cerebral ischemia. There is also a clear time-dependent response. Increase of MMP-9 expression may worsen brain–barrier leakage and potentiates edema and inflammation. This finding suggests that release of HMGBl from damaged neural cells can signal neighboring cells to increase blood vessel permeability and recruits immune cells, thus worsening the progression of brain damage. But there is a caveat: if TLR4 mutant mice are protected against stroke by other undefined mechanisms, then any reduction in MMP-9 might be an indirect effect as well. In our model system, this may be unlikely. The reduction in ischemic MMP-9 levels within the TLR4 mutant brains occur very early, within 3 hours after arterial occlusion. At these early time points, brain infarction has not fully progressed yet, so that any decrease in MMP-9 levels would not be explained by smaller volumes of brain injury. Others have proposed that TLR4 is involved in cell death after stroke, and dysfunction of TLR4 leads to smaller infarction and lower MMP-9 expression. Our study is consistent with these previous ideas and also provides novel evidence showing that extracellular HMGBl induces MMP-9 upregulation via a TNFα-independent mechanism by activating TLR4. Because other MMPs, such as MMP-3, also contribute to ischemia-induced cell death, whether there is upregulation of other MMPs through HMGBl–TLR4 pathway remains to be further addressed.

In conclusion, our study shows that extracellular HMGBl signaling can serve as a mediator of cross-talk between cells on release after stroke and brain injury. The ability of HMGBl to activate TLR4 signaling and upregulate MMP-9 provides a novel mechanism by which neurovascular injury is amplified after initial ischemic injury in the brain. Targeting the HMGBl/TLR4 signaling pathway may be a novel therapeuic approach for stroke.

Acknowledgments
We thank Masaki Nishimura, Yumei Wang, and Igor Bagayev for their excellent assistance.

Sources of Funding
This work was supported by National Institutes of Health grants R21NS056214 (M.A.M.), 5R01NS010828-33 (M.A.M.), R01NS48422 (E.H.L.), R01NS56458 (E.H.L.), R37NS37074 (E.H.L.), and Massachusetts General Hospital Neuroscience Center Core Facility (NIH P30-NS045776). J.Q. was partly supported by American Heart Association grant N0335154 and Massachusetts General Hospital interim support fund. J.S. was supported by NIH grant K08 NS049241.

Disclosures
None.

References

High-Mobility Group Box 1 Promotes Metalloproteinase-9 Upregulation Through Toll-Like Receptor 4 After Cerebral Ischemia
Jianhua Qiu, Jian Xu, Yi Zheng, Ying Wei, Xiaoxia Zhu, Eng H. Lo, Michael A. Moskowitz and John R. Sims

Stroke. published online July 29, 2010; Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Copyright © 2010 American Heart Association, Inc. All rights reserved. Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at: http://stroke.ahajournals.org/content/early/2010/07/29/STROKEAHA.110.590463.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at: http://stroke.ahajournals.org//subscriptions/