Increased Risk of Stroke in the Year After a Hip Fracture
A Population-Based Follow-Up Study

Jiunn-Horng Kang, MD; Shiu-Dong Chung, MD; Sudha Xirasagar, MBBS, PhD; Fu-Shan Jaw, PhD; Herng-Ching Lin, PhD

Background and Purpose—Stroke is a documented risk factor for hip fracture. However, no documented studies are available on the risk of stroke among patients with hip fracture. This study investigated the frequency and risk of stroke after hip fracture using a nationwide population-based study.

Methods—The study cohort included 2101 patients hospitalized with a principal diagnosis of hip fracture from 2001 to 2004. The comparison cohort consisted of 6303 randomly selected subjects matched on sex, age, and year of index healthcare use as controls. We tracked patients for a 1-year period from their index healthcare encounter to identify those who had a stroke. Stratified Cox proportional hazard regression was performed to evaluate the association of hip fracture with subsequent stroke during 1-year follow-up.

Results—Of a total of 8404 patients, 86 (4.1%) from the study group and 170 (2.7%) from the comparison group had strokes during the follow-up period (P<0.001). The stratified Cox proportional analysis shows that the 1-year crude hazard of stroke among patients with hip fracture was 1.55 times (95% CI, 1.19 to 2.03; P=0.001) that of the comparison group. Furthermore, after adjusting for the major cardiovascular risk factors, the increased stroke risk of patients with hip fracture persisted at about the same level as in the unadjusted analysis (hazard ratio, 1.53; 95% CI, 1.17 to 2.01; P=0.002).

Conclusion—Hip fracture is associated with increased risk of stroke in the next year. (Stroke. 2011;42:00-00.)

Key Words: cardiovascular risks ■ hip fracture ■ stroke

Hip fracture is a devastating event that causes major morbidity and mortality, particularly in elderly populations. Although the incidence of hip fracture varies by geography and ethnicity, its increasing incidence is a worldwide problem, which adds considerably to the public health burden and economic costs. Several risk factors are associated with the occurrence of hip fracture, including osteoporosis, physical conditions, comorbidities, concurrent pharmacological effects, and environmental factors. High mortality among patients after hip fractures has been demonstrated in previous studies. Acute and short-term mortality is predominantly a result of infections, cardiovascular comorbidities, and postoperative complications.

Stroke is a recognized risk factor for hip fracture. In addition to significantly decreased balance, decreased reaction time could result in falls among patients with stroke. Accelerating osteoporosis in the stroke-affected limbs predisposes patients with stroke to fractures. Stroke in itself is also a major cause of disability and death. The association between cardiovascular disease and hip fracture has attracted attention in recent years. Several factors are thought to concurrently affect the vascular system and regulation of bone formation. We hypothesize that patients with hip fractures may experience several unfavorable physiological changes that predispose them to stroke. However, to date, studies regarding the risk of stroke among patients with hip fracture are lacking. We investigated the frequency of stroke during a 1-year follow-up period after a hip fracture and computed the relative risk compared with the general population using nationwide population-based data.

Methods

Database
The data source was the “Longitudinal Health Insurance Database (LHID2000),” derived from medical claims data available with the Bureau of National Health Insurance, provided to researchers for longitudinal studies of medical service use. Taiwan launched its National Health Insurance (NHI) program in 1995 to provide...
affordable health care for all residents of Taiwan. As of 2007, 22.60 million of 22.96 million Taiwanese (98.4%) were covered under the NHI program. The LHID2000, prepared by the Taiwan National Health Research Institutes, contains insured population registration files and medical claims for 1 000 000 randomly selected NHI enrollees from the 2000 Registry of NHI Beneficiaries. The representativeness of the LHID2000 relative to the population of NHI enrollees on sex distribution is validated by the Taiwan National Health Research Institutes. The LHID2000 has been released to researchers for longitudinal studies for several years. Many studies based on the LHID2000 have been published. The details of database generation are published online by the Taiwan National Health Research Institutes.

This study was exempt from full review by the Institutional Review Board because the data set consists of deidentified secondary data released without restrictions for research purposes.

Study Sample

This was a prospective case–control study. We identified 2455 patients who were hospitalized with a principal diagnosis of hip fracture (International Classification of Diseases, 9th Revision, Clinical Modification codes 820 to 821) from January 1, 2001, to December 31, 2004 from the LHID2000. Their first hospitalization for hip fracture served as the index healthcare use for hip fracture. We excluded patients aged <18 years (n=159), patients diagnosed with stroke (International Classification of Diseases, 9th Revision, Clinical Modification codes 430 to 438) before their index healthcare use (n=133), and patients with an underlying disorder predisposing the patient to pathological fractures such as cancer or bone disease (n=62). Ultimately, 2101 adult patients with hip fracture were included in the study cohort.

We selected the comparison cohort from the remaining NHI beneficiaries registered in the LHID2000. Like with the study cohort, we excluded patients aged <18 years. We also excluded patients diagnosed with a fracture, cancer, or bone disease during the period 1996 to 2005. Then, we randomly selected 6303 subjects (3 comparison patients for every patient with hip fracture) matched on sex, age (<40, 40 to 49, 50 to 59, 60 to 69, 70 to 79, and ≥80 years), and year of the study patient’s index healthcare use for hip fracture. For comparison patients, their first use of health care in this year served as their index healthcare use regardless of inpatient or ambulatory setting. Patients diagnosed with stroke before their index healthcare use were excluded.

All patients, hip fracture and comparison patients, were tracked (n=8404) for a 1-year period from their index healthcare use to identify patients who experienced a stroke. During the follow-up period, 131 sampled patients died from nonstroke causes, 73 from the study cohort and 58 from the comparison cohort.

Statistical Analysis

We used SAS programs for analysis (SAS System for Windows, Version 8.2; SAS Institute Inc, Cary, NC). We used the SAS proc surveymeans program for selecting comparison patients. We used Pearson χ^2 tests to compare hip fracture versus comparison patients on geographical location of the patient’s residence (northern, central, eastern, and southern Taiwan), monthly income, and selected comorbid medical disorders at baseline (hypertension, diabetes, heart disease (including coronary heart disease, atrial fibrillation and heart failure, and hyperlipidemia), all risk factors for stroke. For these disorders were captured in the study data set if such a diagnosis appeared either in an inpatient claim or in ≥2 ambulatory care claims coded 6 months before and after the index healthcare use.

We used the Kaplan-Meier method and log-rank test to estimate survival curves and to compare the 1-year stroke-free survival rate among patients with hip fracture versus the comparison group. In addition, stratified Cox proportional hazard regression (stratified by age, sex, and the year of index healthcare use) was performed to evaluate the association of hip fracture with a subsequent stroke within 1 year, censoring cases that died from nonstroke causes during that time. We computed hazard ratios (HRs) and 95% CIs to estimate the risk of stroke using a significance level of 0.05.

Results

Table 1 shows the distribution of the hip fracture and comparison patients by demographic characteristics and comorbid medical disorders at baseline. Of 8404 sampled patients, the mean age was 63.8 years for all patients (SD, 20.2) and 63.9 years and 63.8 years, respectively, for hip fracture and comparison patients ($P=0.244$). Over half (54.5%) were aged >70 years. After being matched for age and sex, the patients with hip fracture had a higher prevalence of diabetes than the comparison group ($P<0.001$). Both groups were similar in hypertension, hyperlipidemia, and heart disease prevalence at baseline.

Table 2 presents the distribution of strokes during 1-year follow-up among hip fracture versus comparison patients. Of the total 8404 patients, 256 (3.1%) had a stroke, 86 among patients with hip fracture (4.1%) and 170 (2.7%) among comparison patients. The Figure presents the stroke-free survival curves obtained by the Kaplan-Meier method and shows that patients with hip fracture had significantly lower 1-year stroke-free survival than comparison patients (log-rank test: 12.353; $P<0.001$).

Among patients who had a stroke during follow-up, the median period between index healthcare use and stroke onset was 155 days for all patients and 170 and 154 days, respectively, for hip fracture and comparison patients, respectively ($P=0.452$). There was no significant difference in the type of stroke between the 2 cohorts ($P=0.473$).

Table 2 also shows the crude HRs for stroke. Stratified Cox proportional hazard analysis showed that the hip fracture group had a crude HR of 1.55 relative to the comparison group (95% CI, 1.19 to 2.03; $P<0.001$).

Table 3 presents the covariate-adjusted stroke HRs. After adjusting for patients’ geographic location, monthly income, and presence of hypertension, diabetes, heart disease, and hyperlipidemia at baseline, patients with hip fracture were more likely to have a stroke relative to the comparison group (HR, 1.53; 95% CI, 1.17 to 2.01; $P=0.002$).

Discussion

Although high mortality associated with hip fracture is well recognized (11% to 23% at 6 months and 22% to 29% at 1 year postfracture), the role of comorbidities/complications in mortality remains unclear. Stroke is a leading cause of disability and mortality worldwide. Patients with hip fracture and comorbid stroke are disadvantaged in recovering their functional status and on their survival probability. Our study finds that patients with hip fracture face a higher risk of stroke in the next year. To our knowledge, this is the first longitudinal population-based study to explore the frequency and risk of stroke among patients with hip fracture. Our study suggests that physicians should be proactive to prevent strokes given the subsequent higher risk of stroke among patients with hip fracture.

The mechanisms mediating stroke occurrence among patients with hip fracture is little studied and largely unclear. Several factors may be involved. First, physical inactivity, psychological distress, and pain are common after a hip fracture. Disruption or deterioration of pre-existing cardiovascular risk could be triggered in such circumstances.
Second, embolic phenomena arising out of deep vein thrombosis, fat embolization, and pulmonary embolization are not uncommon in patients with hip fracture during the acute and postoperative periods. Recent studies found that systemic migration of emboli to the brain through intracardiac or extracardiac right to left shunts resulting in stroke is more common than thought earlier. In addition, systemic hypercoagulative status is a documented complication after surgery for proximal femoral fracture, which could trigger a stroke. Third, the hospitalization and surgery required for hip fracture treatment are inevitably associated with unfavorable physiological changes during anesthesia and surgical procedures, which could predispose these patients to cerebro- and cardiovascular events.

Our study found that patients with hip fracture were more likely to have comorbid diabetes mellitus compared

Table 1. Demographic Characteristics and Comorbid Medical Disorders at Baseline Among Hip Fracture and Comparison Patients in Taiwan, 2001–2004 (n=8404)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Patients With Hip Fracture (N=2101)</th>
<th>Comparison Patients (N=6303)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total No. Column Percent</td>
<td>Total No. Column Percent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1183 56.3</td>
<td>3,49 56.3</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>918 43.7</td>
<td>2754 43.7</td>
<td></td>
</tr>
<tr>
<td>Age, mean (SD); monthly income, mean (SD)</td>
<td>76.7 (7.2); NT $12 821 (12 985)</td>
<td>77.4 (8.8); NT $13 211 (12 698)</td>
<td>0.518; 0.212</td>
</tr>
<tr>
<td>Age group</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td><40</td>
<td>366 17.4</td>
<td>1098 17.4</td>
<td></td>
</tr>
<tr>
<td>40–49</td>
<td>142 6.8</td>
<td>426 6.8</td>
<td></td>
</tr>
<tr>
<td>50–59</td>
<td>160 7.6</td>
<td>480 7.6</td>
<td></td>
</tr>
<tr>
<td>60–69</td>
<td>287 13.7</td>
<td>861 13.7</td>
<td></td>
</tr>
<tr>
<td>70–79</td>
<td>684 32.5</td>
<td>2052 32.5</td>
<td></td>
</tr>
<tr>
<td>>79</td>
<td>462 22.0</td>
<td>1386 22.0</td>
<td></td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>0.103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>49 2.3</td>
<td>190 3.0</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>2052 97.7</td>
<td>6113 97.0</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>0.149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>511 24.3</td>
<td>1605 25.5</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1590 75.7</td>
<td>4698 74.5</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>310 14.7</td>
<td>566 9.0</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1791 85.3</td>
<td>5737 91.0</td>
<td></td>
</tr>
<tr>
<td>Heart disease</td>
<td>0.503</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>191 9.1</td>
<td>543 8.6</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1190 90.9</td>
<td>5760 91.4</td>
<td></td>
</tr>
<tr>
<td>Geographic region</td>
<td>0.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern</td>
<td>843 40.1</td>
<td>2765 43.9</td>
<td></td>
</tr>
<tr>
<td>Central</td>
<td>532 25.3</td>
<td>1511 24.0</td>
<td></td>
</tr>
<tr>
<td>Southern</td>
<td>656 34.2</td>
<td>1866 29.6</td>
<td></td>
</tr>
<tr>
<td>Eastern</td>
<td>70 3.4</td>
<td>161 2.5</td>
<td></td>
</tr>
</tbody>
</table>

$1 US=$33 NT in 2005.

Table 2. Crude and Covariate-Adjusted HRs for Stroke Among the Sampled Patients During the 1-Year Follow-Up Starting From the Index Healthcare Use

<table>
<thead>
<tr>
<th>Presence of Stroke</th>
<th>Total Sample (N=8404)</th>
<th>Patients With Hip Fracture (N=2101)</th>
<th>Comparison Patients (N=6303)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>Percent</td>
<td>No.</td>
</tr>
<tr>
<td>One-year follow-up period</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>256 3.1</td>
<td>86 4.1</td>
<td>170 2.7</td>
</tr>
<tr>
<td>No</td>
<td>8148 96.9</td>
<td>2015 95.9</td>
<td>6133 97.3</td>
</tr>
<tr>
<td>Crude HR (95% CI)</td>
<td>—</td>
<td>1.55* (1.19–2.03)</td>
<td>—</td>
</tr>
</tbody>
</table>

*P<0.001.
Table 3. Covariate-Adjusted HR* for Stroke During the 1-Year Follow-Up Period for Stroke Among the Sampled Patients (n=8404)

<table>
<thead>
<tr>
<th>Variables</th>
<th>HR</th>
<th>95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients with hip fracture</td>
<td>1.53</td>
<td>1.17–2.01</td>
<td>0.002</td>
</tr>
<tr>
<td>Comparison (reference group)</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>1.73</td>
<td>0.99–3.01</td>
<td>0.051</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1.59</td>
<td>1.23–2.05</td>
<td><0.001</td>
</tr>
<tr>
<td>Diabetes</td>
<td>1.56</td>
<td>1.13–2.16</td>
<td>0.007</td>
</tr>
<tr>
<td>Heart disease</td>
<td>1.51</td>
<td>1.09–2.11</td>
<td>0.014</td>
</tr>
<tr>
<td>Geographic region</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern (reference group)</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central</td>
<td>1.11</td>
<td>0.81–1.51</td>
<td>0.525</td>
</tr>
<tr>
<td>Southern</td>
<td>0.96</td>
<td>0.71–1.29</td>
<td>0.768</td>
</tr>
<tr>
<td>Eastern</td>
<td>0.15</td>
<td>0.02–1.10</td>
<td>0.062</td>
</tr>
<tr>
<td>Monthly income</td>
<td>1.00</td>
<td>1.00–1.00</td>
<td>0.574</td>
</tr>
</tbody>
</table>

*Using stratified Cox proportional analysis, which was stratified by age, sex, and the year of index healthcare use.
healthier set of control subjects and therefore underesti-
mate the risk of stroke among other hospitalized control
subjects. Our study design, however, is consistent with our
objective of assessing the overall relative risk of stroke
among patients with hip fracture relative to the general
population. Selection of control subjects from among
hospitalized patients would provide the excess stroke risk
among patients with hip fracture relative to other signifi-
cantly ill patients. Although useful in itself, it was not a
study objective and therefore not studied. Finally, the type
of hip fracture, anesthesia, and surgery is not accounted for
in our study. Some authors suggest that the type of fracture
and surgery affects the outcome.9,41 Further studies are
needed to explore the risk of stroke among hip fracture
subtypes.

In conclusion, patients with hip fracture are at increased
risk of a subsequent stroke within the next year. The
mechanisms involved need further study. Aggressive mon-
toring and modification of cardiovascular risk factors may
help to reduce adverse cardiovascular events in this popula-
tion.

Acknowledgments

This study is based in part on data from the National Health
Insurance Research Database provided by the Bureau of National
Health Insurance, Department of Health, Taiwan, and managed by
the National Health Research Institutes. The interpretations and
conclusions contained herein do not represent those of the Bureau of
National Health Insurance, Department of Health, or the National Health
Research Institutes.

Disclosures

None.

References

1. Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic
2. Fisher AA, Davis MW, Rubenach MG, De Simone G, Ferguson TB,
Flegal KM, Ford E, Furie K, Go A, Greenlund K, Haase N, Hailpern S, Ho
M, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A,
V, Rosamond W, Sacco R, Sorlie P, Stafford R, Steenberger J, Thom T,
Wasserthiel-Smoller S, Wong N, Wylie-Rosett J, Hong Y; American
Heart Association Statistics Committee and Stroke Statistics
Subcommittee. Heart disease and stroke statistics—2009 update: a report from the
American Heart Association Statistics Committee and Stroke Statistics

11. Rammelaar A, Nilsson M, Borssen B, Gustafson Y. A major, and
increasing risk factor for femoral neck fracture. Stroke. 2000;31:
1572–1577.
12. Kanis J, Oden A, Johnell O. Acute and long-term increase in fracture risk
13. Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB,
Flegal KM, Ford E, Furie K, Go A, Greenlund K, Haase N, Hailpern S, Ho
M, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A,
V, Rosamond W, Sacco R, Sorlie P, Stafford R, Steenberger J, Thom T,
Wasserthiel-Smoller S, Wong N, Wylie-Rosett J, Hong Y; American
Heart Association Statistics Committee and Stroke Statistics
Subcommittee. Heart disease and stroke statistics—2009 update: a report from the
American Heart Association Statistics Committee and Stroke Statistics
14. Batsis JA, Huddleston JM, Melton LJ IV, Huddleston PM, Lopez-
Jimenez F, Larson DR, Gullerud RE, McMahon MM. Body mass index and
risk of adverse cardiac events in elderly patients with hip fracture: a
Pedersen NL, Michaelsson K. Cardiovascular diseases and risk of hip
16. McFarlane SI. Bone metabolism and the cardiometabolic syndrome:
17. McFarlane SI, Munyapapa R, Shin JH, Bakhtyar G, Sowers JR. Osteo-
porosis and cardiovascular disease: brittle bones and boned arteries, is there a link?
18. Gau CS, Chang IS, Lin Wu FL, Yu HT, Huang YW, Chi CL, Chien SY,
Lin KM, Liu MY, Wang HP. Usage of the claim database of national health
19. Lee EK, Chan TM, Tseng PL. Using the pharmacoepidemiology
approach to evaluate the first year post-transplantation ambulatory health
21. Edelberg J, Ollendorf D, Oster G. Venous thromboembolism following
major orthopedic surgery: review of epidemiology and economics. Am J
22. Bastani A, Sheng L, Silvestry FE, Herrmann HC. Characteristics of adult
Right-to-left shunts may be not uncommon cause of TIA in Japan. J Neurol Sci. 2009;277:13–16.
N, Strotmeyer ES, Shorr RI, Vinik AI, Odden MC, Park SW, Faulkner KA, Harris TB; Health, Aging, and Body Composition Study. Diabetes-
26. Khazai NB, Beck GR Jr, Umpierrez GE. Diabetes and fractures: an
overshadowed association. Curr Opin Endocrinol Diabetes Obes. 2009;
27. van Diepen S, Majumdar SR, Bakal JA, McAlister FA, Ezekowitz JA.
Heart failure is a risk factor for orthopedic fracture: a population-based
28. Bhokar VS, Sun Y, Bhattacharya SK, Ahokas RA, Myers LK, Xing Z,
Smith RA, Gerling IC, Weber KT. Hyperparathyroidism and the calcium
29. Zittermann A, Schleithoff SS, Tendrich G, Berthold HK, Kohls-Degen
31. Huddleston JM, Whitford JK. Medical care of elderly patients with hip
32. Cameron ID, Handoll HH, Fennegan TP, Madhok R, Langhorne P.
Co-ordinated multidisciplinary approaches for inpatient rehabilitation of

Downloaded from http://stroke.ahajournals.org/ by guest on April 12, 2017

Increased Risk of Stroke in the Year After a Hip Fracture: A Population-Based Follow-Up Study
Jiunn-Horng Kang, Shiu-Dong Chung, Sudha Xirasagar, Fu-Shan Jaw and Herng-Ching Lin

Stroke. published online December 23, 2010;
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/early/2010/12/23/STROKEAHA.110.595538

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2012/03/12/STROKEAHA.110.595538.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/
Abstract 8

Increased Risk of Stroke in the Year After a Hip Fracture
A Population-Based Follow-Up Study

Jiunn-Horng Kang, MD; Shiu-Dong Chung, MD; Sudha Xirasagar, MBBS, PhD; Fu-Shan Jaw, PhD; Herng-Ching Lin, PhD

(Stroke. 2011;42:336-341.)

Key Words: cardiovascular risks ■ hip fracture ■ stroke

배경과 목적
뇌졸중은 고관절 골절(hip fracture)의 주요한 위험이다. 그러나 골절 골절 환자에서의 뇌졸중 위험이 대조군에 비해 증가하는 이론적 연구이다. 본 연구는 전국적인 연구 기반 연구를 이용하여, 고관절 골절 이후 뇌졸중과 밀도, 위험도에 대한 분석한 것이다.

방법
본 연구는 2001~2004년에 고관절 골절로 입원한 환자 2,101명을 대상으로 하였다. 이들에 대하여 성별, 연령 및 건강 검진결과 기준으로 하여 6,303명의 무작위 추출 대조군을 선정하였다. 고관절 골절 이후 1년간의 추적 관찰 기간 동안 발생하는 뇌졸중과 골절 골절의 연관성을 분석하기 위하여, 종화 로스 비례 위험 회귀 분석(stratified Cox proportional hazard regression)을 실시하였다.

결과
총 8,404명의 환자 중, 추적 관찰 기간 동안 86명(4.1%)의 골절 환자 및 170명(2.7%)의 대조군 환자에서 뇌졸중이 발생하였다. 종화 로스 비례 위험 분석을 통하여, 고관절 골절 환자의 1년 뇌졸중 위험도는 대조군에 비하여 1.55배(95% CI, 1.19~2.03: P=0.001) 높았다. 또한 주요 심혈관계 위험인자를 보정한 후, 고관절 골절 환자들의 뇌졸중 위험도 증가는 보정하지 않은 분석과 비슷하였다(위험비[hazard ratio], 1.53: 95% CI, 1.17~2.01: P=0.002).

결론
고관절 골절은 이후 1년간 뇌졸중 위험 증가와 연관되어 있다.