Pharmacological Deep Vein Thrombosis Prophylaxis Does Not Lead to Hematoma Expansion in Intracerebral Hemorrhage With Intraventricular Extension

Tzu-Ching Wu, MD; Mallik Kasam, PhD; Nusrat Harun, MS; Hen Hallevi, MD; Hesna Bektas, MD; Indrani Acosta, MD; Vivek Misra, MD; Andrew D. Barreto, MD; Nicole R. Gonzales, MD; George A. Lopez, MD; James C. Grotta, MD; Sean I. Savitz, MD

Background and Purpose—Patients with intracerebral hemorrhage (ICH) are at high risk for development of deep venous thrombosis. Current guidelines state that low-dose subcutaneous low-molecular-weight heparin or unfractionated heparin may be considered at 3 to 4 days from onset. However, insufficient data exist on hematoma volume in patients with ICH before and after pharmacological deep venous thrombosis prophylaxis, leaving physicians with uncertainty regarding the safety of this practice.

Methods—We identified patients from our stroke registry (June 2003 to December 2007) who presented with ICH only or ICH+intraventricular hemorrhage and received either low-molecular-weight heparin subcutaneously or unfractionated heparin within 7 days of admission and had a repeat CT scan performed within 4 days of starting deep venous thrombosis prophylaxis. We calculated the change in hematoma volume from the admission and posttreatment CTs. Hematoma volume was calculated using the ABC/2 method and intraventricular hemorrhage volumes were calculated using a published method of hand drawn regions of interest.

Results—We identified 73 patients with a mean age of 63 years and median National Institutes of Health Stroke Scale score 11.5. The mean baseline total hematoma volume was 25.8 mL±23.2 mL. There was an absolute change in hematoma volume from pre- and posttreatment CT of −4.3 mL±11.0 mL. Two patients developed hematoma growth. Repeat analysis of patients given pharmacological deep venous thrombosis prophylaxis within 2 or 4 days after ICH found no increase in hematoma size.

Conclusions—Pharmacological deep venous thrombosis prophylaxis given subcutaneously in patients with ICH and/or intraventricular hemorrhage in the subacute period is generally not associated with hematoma growth. (Stroke. 2011;42:00-00.)

Key Words: anticoagulants ■ DVT prophylaxis ■ intracerebral hemorrhage

Patients with intracerebral hemorrhage (ICH) or ischemic stroke are at high risk for development of venous thromboembolism (VTE).1 In comparison to patients with ischemic stroke, the risk for VTE is higher in the hemorrhagic stroke population.2 VTE risk is also enhanced by immobilization and paresis of the lower extremities and late recognition of subclinical thrombotic events. Without preventative measures, 53% and 16% of immobilized patients develop deep venous thrombosis (DVT) or pulmonary embolism (PE), respectively, in this population.3 One study detected DVT in 40% of patients with ICH within 2 weeks and 1.9% of those patients had a PE.4 Development of VTE in the patient with ICH adds further detrimental complications to an already lethal disease with a 1-month case-fatality rate of 35% to 52%.5 DVT also prolongs the length of hospital stays, delays rehabilitation programs, and introduces a potential risk for PE.6

Current American Heart Association/American Stroke Association guidelines for acute ischemic stroke recommend the administration of subcutaneous (SQ) anticoagulants such as unfractionated heparin (UH) or low-molecular-weight heparin (LMWH) to prevent DVT in immobilized patients.1 On the other hand, American Heart Association/American Stroke Association guidelines for hemorrhagic stroke are less clear stating that subcutaneous anticoagulants may be considered at 3 to 4 days from onset after documentation of cessation of bleeding.5 This tepid recommendation stems from the fact that there is a lack of large randomized controlled trials addressing VTE prevention in the ICH population and even less data are available for patients with intraventricular hemorrhage (IVH). As a consequence, there is no consensus on how and when to start DVT prophylaxis to prevent VTE complications in the ICH and/or IVH population.
Much hesitation arises from the concern that anticoagulants may increase hematoma size and cause neurological worsening.7 There have been 2 small prospective randomized trials published on early heparin use in ICH both showing no increased risk of bleeding.8,9 One recent published prospective randomized trial compared early use of LMWH and compression stockings in patients with ICH also found no increase risk of hematoma enlargement in both groups.6 However, the number of patients was small in these studies and subsequent CTs were not always routinely performed to document rebleeding. With the lack of data and concerns about hematoma expansion, physicians are left with uncertainty regarding the safety of this practice.10,11

This retrospective study aimed to assess the safety of SQ anticoagulants in the ICH and/or IVH population and its association with hematoma growth.

Methods

Study Design and Population

A retrospective search from our prospectively gathered stroke registry from June 2003 to December 2007 identified all patients with the diagnosis of ICH. Patients were excluded who had an ICH etiology of mass lesion, arteriovenous malformation, aneurysm, or undetermined. Hypertensive ICH was diagnosed if patients had a history of hypertension with typical hemorrhage location on imaging. Amyloid bleeds were diagnosed using clinical information, including history of hypertension, blood pressure on presentation and throughout the hospitalization stay, and supportive imaging. Coagulopathy-associated bleeds were diagnosed if patients had ICH in the setting of elevated international normalized ratios on admission. Patients were categorized as having an undetermined etiology if it was unclear whether the etiology was hypertension, amyloid, or both based on the clinical and radiological data.

Patients were included after chart reviews confirmed ICH and/or IVH on admission and received either LMWH SQ or UH SQ within 7 days of admission and had a subsequent CT scan performed within 4 days of starting DVT prophylaxis. Treatment within 7 days of admission was chosen because the guidelines for DVT prophylaxis initiation is unclear and to also capture prescribing trends at our institution. CT scans within 4 days of starting DVT prophylaxis was chosen to allow for variability in posttreatment scanning because this is a retrospective analysis. Separate analysis was performed on patients that received either LMWH SQ or UH SQ within 2 and 4 days of admission and by diagnosis (ICH only, ICH+VH). Chart review was performed on patients who fit the study criteria (Figure 1) to gather baseline demographics and clinical information including admission National Institutes of Health Stroke Scale score and discharge modified Rankin score.

Management

Patients with ICH and/or IVH were treated according to American Heart Association/American Stroke Association guidelines5 and were not treated with Factor VII or received intraventricular tissue plasminogen activator; however, blood pressures in the acute post-bleed period were not strictly protocolized. In patients who demonstrated obstructive hydrocephalus, an external ventricular drain was placed. Two forms of SQ anticoagulants (LMWH=40 mg enoxaparin or 5000 U dalteparin SQ once daily, UH=5000 U heparin SQ 2 to 3 times a day) were used at our institution during this period. Medication preference and timing of administration were left up to the discretion of the attending physician. Intermittent compression devices were used on all patients.

Radiological

All CT scans were performed using identical technique (slice thickness, 5 mm; gantry tilt, 16°). Admission CT scans was reviewed by the authors to confirm ICH and/or IVH. All hematoma volume calculations were performed by a single author blinded to the treatment and outcome of the study. ICH volume within the parenchyma was calculated using the ABC/2 method.12 IVH volume was calculated using a published method of hand-drawn regions of interest around each area of intraventricular blood in every slice, multiplied by the slice thickness, and added together to obtain the total IVH volume.13 The sum of the ICH volume and IVH volume was considered the total hematoma volume (HV). The change in HV (Δvol) was defined as the difference between the total HV of the first posttreatment CT scan and the total HV of the admission CT scan. Hematoma site was classified into deep (thalamus, putamen, caudate), lobar, and other (primary IVH, cerebellar, brain stem).

Hematoma Growth

We chose absolute hematoma growth as our primary outcome and significant hematoma growth as our secondary outcome. Significant hematoma growth was defined as change in HV \geq33% and an absolute change in volume \geq5 mL. We chose a change in volume of \geq33% because it corresponds to a 10% increase in diameter in a sphere and it had been used in prior hematoma growth studies.14 An absolute Δvol of 5 mL was chosen as the cutoff because the authors felt that a Δvol \leq5 mL was unlikely to cause clinical deterioration.
and it also accounts for imprecise hematoma volume calculation using CT.

Statistical Analysis

Using the cutoff of 5 mL and the SD of our data (25 mL), sample size/power calculations were performed and it showed that with a correlation of 0.85, it would require 61 patients for 80% power in detecting a \(\Delta V \) of 5 mL. Means with SDs or medians for continuous variables were used. The differences were assessed using \(t \) tests, \(t^{2} \) tests, Fisher exact test, or Mann-Whitney \(U \) test. A significance level of 0.05 was used to assess statistical difference. The statistical analysis was performed using SAS 9.

Results

We identified 73 patients who met study criteria. Baseline clinical and radiological characteristics are shown in Table 1. The mean age was 63 years and the median National Institutes of Health Stroke Scale score on admission was 11.5. Fifty patients (69%) received enoxaparin, 20 patients (27%) received UH, and 3 patients (4%) received dalteparin. The time from ICH admission to DVT prophylaxis administration also varied; the majority of DVT prophylaxis was administered between Days 2 and 5 (Figure 2). Overall, there was an absolute \(\Delta V \) from pre- and posttreatment CT of \(-4.3 \text{ mL} \pm 11.0 \text{ mL} (P=0.0015)\). Analyzing only the ICH portion in all 73 patients showed absolute \(\Delta V \) of \(-0.3 \text{ mL} \pm 8.8 \text{ mL} (P=0.77)\). In patients without external ventricular drain placement, the absolute \(\Delta V \) was \(-1.5 \text{ mL} \pm 6.8 \text{ mL} (P=0.69)\).

Two patients (2.7%) showed significant hematoma growth within the study period. One patient received LMWH and 1 received UH with hypertension as the etiology of the bleed in both patients. No pattern was identified in regard to clinical and radiological characteristics for these 2 patients who had significant hematoma growth.

We analyzed separately patients who received DVT prophylaxis within 4 days of admission and results revealed an absolute \(\Delta V \) from pre- and posttreatment CT of \(-1.3 \text{ mL} \pm 8.9 \text{ mL} (P=0.31; \text{Table 2})\). For patients who received DVT prophylaxis within 2 days of admission, data showed an absolute \(\Delta V \) from pre- and posttreatment CT of \(-0.65 \text{ mL} \pm 5.2 \text{ mL} (P=0.54; \text{Table 2})\).

Discussion

To our knowledge, this study is the first to report hematoma growth with regard to the use of SQ anticoagulants for DVT prevention in the ICH and IVH population. In the study recently published by Orken et al, they studied the safety of

Table 1. Clinical and Radiological Characteristics of Patients Receiving Pharmacological DVT Prophylaxis Within 7 Days of Admission

<table>
<thead>
<tr>
<th>Baseline Characteristics</th>
<th>Total Patients (n=73)</th>
<th>Patients Without EVD (n=52)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age, years (range)</td>
<td>63 (37–93)</td>
<td>63 (37–87)</td>
</tr>
<tr>
<td>Sex, males/females</td>
<td>40/33</td>
<td>29/23</td>
</tr>
<tr>
<td>Median admission NIHSS (range)</td>
<td>11.5 (0–40)</td>
<td>10 (0–40)</td>
</tr>
<tr>
<td>Median discharge mRS (range)</td>
<td>4 (0–6)</td>
<td>4 (0–6)</td>
</tr>
<tr>
<td>EVD, %</td>
<td>21 (29%)</td>
<td>0</td>
</tr>
<tr>
<td>DVT or PE, %</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Radiological Characteristics</th>
<th>Total HV</th>
<th>ICH Only HV</th>
<th>Total HV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean admittance HV, mL (range)</td>
<td>25.8±23.2 (0.6–90)</td>
<td>17.6±19.3 (0–90)</td>
<td>19.5±20.3 (0.6–90)</td>
</tr>
<tr>
<td>Mean posttreatment HV, mL (range)</td>
<td>21.6±22.6 (0.5–108)</td>
<td>17.3±20.4 (0–108)</td>
<td>18±18.9 (0.7–80)</td>
</tr>
<tr>
<td>Mean (\Delta V) in HV, mL (range)</td>
<td>(-4.3±11.0 (−41.9–23.5))</td>
<td>(-0.3±8.8 (−35–38))</td>
<td>(-1.5±6.8 (−35.0–19.2))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>Total HV</th>
<th>ICH Only HV</th>
<th>Total HV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep, %</td>
<td>47 (64%)</td>
<td>31 (60%)</td>
<td>9 (17%)</td>
</tr>
<tr>
<td>Lobar, %</td>
<td>14 (20%)</td>
<td>12 (23%)</td>
<td>9 (17%)</td>
</tr>
<tr>
<td>Other,* %</td>
<td>12 (16%)</td>
<td>9 (17%)</td>
<td>3 (6%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DVT prophylaxis</th>
<th>Total HV</th>
<th>ICH Only HV</th>
<th>Total HV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enoxaparin, %</td>
<td>50 (69%)</td>
<td>37 (71%)</td>
<td>3 (6%)</td>
</tr>
<tr>
<td>Heparin, %</td>
<td>20 (27%)</td>
<td>12 (23%)</td>
<td>3 (6%)</td>
</tr>
<tr>
<td>Dalteparin, %</td>
<td>3 (4%)</td>
<td>3 (6%)</td>
<td>3 (6%)</td>
</tr>
</tbody>
</table>

*Other indicates cerebellar, brainstem, primary IVH.

NIHSS indicates National Institutes of Health Stroke Scale; mRS, modified Rankin Scale; EVD, external ventricular drain.
Table 2. Clinical and Radiological Characteristics of Patients Receiving Pharmacological DVT Prophylaxis Within 4 and 2 Days of Admission

<table>
<thead>
<tr>
<th>Baseline Characteristics</th>
<th>Within 4 Days (n=50)</th>
<th>Within 2 Days (n=24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age, years (range)</td>
<td>62.78 (37–93)</td>
<td>63.91 (40–93)</td>
</tr>
<tr>
<td>Sex, males/females</td>
<td>28/22</td>
<td>10/14</td>
</tr>
<tr>
<td>Median admission NIHSS (range)</td>
<td>9 (0–40)</td>
<td>8.5 (1–40)</td>
</tr>
<tr>
<td>Median discharge mRS (range)</td>
<td>4.5 (0–6)</td>
<td>5 (1–6)</td>
</tr>
<tr>
<td>EVD, %</td>
<td>10 (20%)</td>
<td>3 (12.5%)</td>
</tr>
<tr>
<td>Radiological Characteristics</td>
<td>Total HV</td>
<td>Total HV</td>
</tr>
<tr>
<td>Mean initial CT volume, mL (range)</td>
<td>21.6±22.7 (0.60–85.5)</td>
<td>20.1±18.9 (0.6–75)</td>
</tr>
<tr>
<td>Mean final CT volume, mL (range)</td>
<td>20.3±24.4 (0.5–109)</td>
<td>19.5±19.7 (0.7–69)</td>
</tr>
<tr>
<td>Mean Δ in CT volume, mL (range)</td>
<td>−1.3±8.9 (−30.7–23.5)</td>
<td>−0.65±5.2 (−18.5–12.9) (P=0.31)</td>
</tr>
</tbody>
</table>

Location
- Deep, % 30 (60%) 14 (58%)
- Lobar, % 11 (22%) 8 (33%)
- Other,* % 9 (18%) 2 (8%)

DVT prophylaxis
- Enoxaparin, % 37 (74%) 19 (79%)
- Heparin, % 12 (24%) 5 (21%)
- Dalteparin, % 1 (2%) 0 (0%)

*Other indicates cerebellar, brainstem, primary IVH.

NIHSS indicates National Institutes of Health Stroke Scale; mRS, modified Rankin Scale.

LMWH and compression stockings for DVT prophylaxis and its effects on hematoma enlargement in patients with ICH. They found that treatment with LMWH (n=39) and compression stockings (n=36) for DVT/PE prevention was not associated with hematoma enlargement, but did not report the frequency of IVH in their study population nor did they comment on time to medication administration, only that it was given after 48 hours.6 In contrast, the majority of our patients were started on anticoagulants within 2 to 5 days of their hemorrhage with 28% (n=20) patients receiving anticoagulants within 48 hours of admission. In general, we found that the administration of pharmacological DVT prophylaxis SQ in the acute (2 to 4 days) to subacute period (≤7 days) was not associated with hematoma growth. Our patients in this study had variable sizes of hematoma from 0.5 mL to 90 mL. In the subacute period, however, 2 patients did develop significant hematoma expansion, but no pattern or factors could be found that were associated with hematoma growth. Hematoma growth was also not observed when the patient population was partitioned by diagnosis (ICH only and ICH+IVH) and by the presence of an external ventricular drain. However, the difference in Δvol in the ICH only group was much smaller than the ICH+IVH group confirming that IVH plays a role in hematoma resolution. Of the 36 patients with ICH+IVH, 21 of them had an external ventricular drain placed and we only identified 1 patient who developed bleeding around the catheter. Therefore, starting SQ anticoagulants in patients with external ventricular drains may be safe with low rates of complications. Our data, however, do indicate that patients who were treated in the acute period had lower median admission National Institutes of Health Stroke Scale scores (9 within Day 4, 8.5 within Day 2) compared with a median National Institutes of Health Stroke Scale score of 11.5 for those treated within Day 7 of admission. This may indicate that there is a tendency to delay SQ anticoagulation in the sicker patients with ICH or possibly those patients with higher admission National Institutes of Health Stroke Scale scores tend to have early rebleeding leading to later SQ anticoagulation administration.

Current guidelines for ICH management recommend intermittent pneumatic compression for prevention of VTE, and its use has been demonstrated to be effective.15 Although no randomized data exist, the addition of SQ anticoagulants to intermittent pneumatic compression devices should provide added protection against the development VTE. The widespread availability, low cost, and proven efficacy of SQ anticoagulants for VTE prevention can potentially reduce VTE complications in the highly vulnerable ICH/IVH population. Our study adds to the existing limited literature and further supports the safety of anticoagulants in the acute and subacute period after ICH.

Our study is limited, however, by its retrospective nature, small sample size, and the inherent inaccuracy of measuring hematoma volume on CT scan. With the small sample, we were also unable to assess the efficacy of SQ LMWH or SQ UH in preventing DVT or PE; however, there were no PEs or DVTs observed in the study population. The observed overall hematoma reduction may be largely contributed by ventriculostomy drainage and/or natural hematoma regression; however, when looking at the ICH portion of all 73 study patients, hematoma growth was not observed. Another major confounder may be blood pressure control, because some have postulated that hematoma growth is associated with the degree of hypertension control in patients with ICH.16

The inclusion criteria of the study may have also affected our data and results. First, we only included patients who received DVT prophylaxis. This selection bias may have excluded patients who had more severe hemorrhages with the potential for early hematoma growth in which the attending physician may have chosen to withhold anticoagulants. Conversely, by only including patients who had follow-up imaging, we may also have neglected a population of stable patients who received SQ anticoagulants and were clinically stable, hence not necessitating follow-up CT scans. This may have overrepresented patients with hematoma enlargements in this study because those who clinically deteriorate are more likely to have follow-up imaging. Lastly, by choosing to only analyze the hematoma volume of the first posttreatment CT scan, we were limited in our ability to detect delayed hematoma expansion.

In conclusion, data from this study suggest that administration of SQ LMWH or UH in patients with ICH and/or IVH for DVT prophylaxis in the acute to subacute period is generally safe. A prospective safety and efficacy study of SQ anticoagulants in patients with ICH is warranted.
Sources of Funding
This study was funded by National Institutes of Health Training Grant 5 T32 NS007412-12, Specialized Program for Translational Research in Acute Stroke (SPOTRIAS) Grant P50 NS 044227, the Howard Hughes Medical Institute, and the American Heart Association 0475008N.

Disclosures
None.

References

Pharmacological Deep Vein Thrombosis Prophylaxis Does Not Lead to Hematoma Expansion in Intracerebral Hemorrhage With Intraventricular Extension

Stroke. published online January 21, 2011; Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/early/2011/01/21/STROKEAHA.110.600593

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2012/03/12/STROKEAHA.110.600593.DC2
http://stroke.ahajournals.org/content/suppl/2012/02/28/STROKEAHA.110.600593.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/
La profilaxis farmacológica de la trombosis venosa profunda no conduce a una expansión del hematoma en la hemorragia intracerebral con extensión intraventricular

Tzu-Ching Wu, MD; Mallik Kasam, PhD; Nusrat Harun, MS; Hen Hallevi, MD; Hesna Bektas, MD; Indrani Acosta, MD; Vivek Misra, MD; Andrew D. Barreto, MD; Nicole R. Gonzales, MD; George A. Lopez, MD; James C. Grotta, MD; Sean I. Savitz, MD

Antecedentes y objetivo—Los pacientes con hemorragia intracerebral (HIC) tienen un riesgo elevado de presentar una trombosis venosa profunda. Las guías actuales afirman que puede considerarse el uso de dosis bajas subcutáneas de heparinas de bajo peso molecular o heparina no fraccionada a los 3 a 4 días del inicio. Sin embargo, no hay datos suficientes sobre el volumen de hematoma en los pacientes con HIC antes y después de la profilaxis farmacológica de la trombosis venosa profunda, y ello crea incertidumbre en los médicos respecto a la seguridad de esta práctica.

Métodos—Identificamos a los pacientes de nuestro registro de ictus (junio de 2003 a diciembre de 2007) que presentaron una HIC sola o una HIC + hemorragia intraventricular y recibieron o bien heparina de bajo peso molecular por vía subcutánea o bien heparina no fraccionada en un plazo de 7 días tras el ingreso, y en los que se obtuvo una nueva TC en los 4 días siguientes al inicio de la profilaxis de la trombosis venosa profunda. Calculamos el cambio del volumen del hematoma entre la TC de ingreso y la TC posterior al tratamiento. El volumen del hematoma se calculó utilizando el método ABC/2 y los volúmenes de hemorragia intraventricular se calcularon con un método publicado de delimitación manual de las regiones de interés.

Resultados—Identificamos a 73 pacientes de una media de edad de 63 años y con una mediana de 11,5 en la puntuación de la National Institutes of Health Stroke Scale. La media basal del volumen total de hematoma fue de 25,8 mL ± 23,2 mL. Se observó un cambio absoluto del volumen del hematoma entre la TC previa y la posterior al tratamiento de -4,3 mL ± 11,0 mL. Dos pacientes presentaron un crecimiento del hematoma. Un nuevo análisis de los pacientes que recibieron profilaxis farmacológica de la trombosis venosa profunda en un plazo de 2 o de 4 días tras la HIC no mostró aumento alguno del tamaño del hematoma.

Conclusiones—La profilaxis farmacológica de la trombosis venosa profunda administrada por vía subcutánea en pacientes con HIC y/o hemorragia intraventricular en el periodo subagudo no se asocia generalmente a un crecimiento del hematoma. (Traducido del inglés: Pharmacological Deep Vein Thrombosis Prophylaxis Does Not Lead to Hematoma Expansion in Intracerebral Hemorrhage With Intraventricular Extension. Stroke. 2011;42:705-709.)

Palabras clave: anticoagulants ■ DVT prophylaxis ■ intracerebral hemorrhage

Los pacientes con hemorragia intracerebral (HIC) o ictus isquémico presentan un riesgo elevado de desarrollar una tromboembolia venosa (TEV). En comparación con los pacientes con ictus isquémico, el riesgo de TEV es mayor en la población de pacientes con ictus hemorrágicos. El riesgo de TEV se ve potenciado también por la inmovilización y la parálisis de las extremidades inferiores y por la identificación tardía de los eventos trombóticos subclínicos. Sin medidas preventivas, el 53% y el 16% de los pacientes inmovilizados sufren trombosis venosa profunda (TVP) o embolia pulmonar (EP), respectivamente, en esa población. En un estudio se detectó la presencia de TVP en el 40% de los pacientes con HIC en un plazo de 2 semanas y el 1,9% de estos pacientes presentaron una EP. La aparición de un TEV en el paciente con HIC aumenta aún más las complicaciones ne-

gativas de una enfermedad ya de por sí letal, que tiene una tasa de letalidad a un mes del 35% al 52%.

Las actuales guías de American Heart Association/American Stroke Association para el ictus isquémico agudo recomiendan la administración de anticoagulantes subcutáneos (s.c.) como la heparina no fraccionada (HNF) o la heparina de bajo peso molecular (HBPM) para prevenir la TVP en pacientes inmovilizados. En cambio, las guías de American Heart Association/American Stroke Association para el ictus hemorrágico son menos claras al indicar que puede considerarse el empleo de anticoagulantes subcutáneos a los 3 a 4 días del inicio, tras haber documentado el cese de la hemorragia. Esta recomendación tibia deriva del hecho de que hay...
una falta de ensayos controlados y aleatorizados amplios que aborden la prevención del TEV en la población con HIC y son menos aún los datos disponibles respecto a los pacientes con hemorragia intraventricular (HIV). En consecuencia, no hay un consenso respecto a cómo y cuándo iniciar la profilaxis de la TVP para prevenir las complicaciones de TEV en la población con HIC y/o HIV.

La preocupación por la posibilidad de que los anticoagulantes puedan aumentar el tamaño del hematoma y causar un empeoramiento neurológico hace surgir muchas dudas. Se han publicado 2 ensayos prospectivos y aleatorizados pequeños sobre el uso temprano de heparina en la HIC, y ninguno de ellos ha mostrado un aumento del riesgo de hemorragia. Un ensayo prospectivo y aleatorizado recientemente publicado comparó el uso temprano de HBPM y las medias de compresión en pacientes con HIC y no observó aumento alguno del crecimiento del hematoma en ninguno de los dos grupos. Sin embargo, el número de pacientes de estos estudios fue bajo y no se obtuvieron TC posteriores de manera sistemática en todos los casos para documentar la posible recurrencia del sangrado. Dada la falta de datos y la preocupación existente por la posibilidad de expansión del hematoma, los médicos se encuentran en una situación de incertidumbre respecto a la seguridad de esa práctica.

Este estudio retrospectivo tuvo como objetivo evaluar la seguridad de los anticoagulantes s.c. en la población con HIC y/o HIV y su asociación con el crecimiento del hematoma.

Métodos

Diseño y población del estudio

Se realizó una búsqueda retrospectiva en nuestro registro de ictus para los datos obtenidos de forma prospectiva entre junio de 2003 y diciembre de 2007, con objeto de identificar a todos los pacientes con un diagnóstico de HIC. Se excluyó a los pacientes en los que la etiología de la HIC era una masa, una malformación arteriovenosa, un aneurisma o indeterminada. Se diagnosticó una HIC hipertensiva si los pacientes tenían antecedentes de hipertensión arterial con una localización de la hemorragia típica en las exploraciones de imagen. Las hemorragias amiloideas se diagnosticaron utilizando la información clínica, incluidos los antecedentes de hipertensión arterial, la presión arterial en el momento de la presentación inicial y a lo largo de toda la hospitalización y las exploraciones de imagen de apoyo. Las hemorragias asociadas a coagulopatías se diagnosticaron en los pacientes con una HIC en presencia de una ratio normalizada internacional elevada al ingreso. Se clasificó a los pacientes en el grupo de etiología indeterminada si no estaba claro que la etiología fuera hipertensiva, amiloidea o de ambos tipos, en función de los datos clínicos y radiológicos.

Los pacientes fueron incluidos en el análisis después de que la revisión de la historia clínica confirmara la HIC y/o HIV al ingreso, y que habían recibido HBPM s.c. o HNF s.c. en un plazo de 7 días tras el ingreso y disponían de una TC posterior obtenida en los 4 días siguientes al inicio de la profilaxis de la TVP. Se utilizó el criterio de un tratamiento en los 7 días siguientes al ingreso porque las directrices para iniciar la profilaxis de la TVP no son claras y también para capturar las tendencias de prescripción de nuestro centro. El criterio de disponibilidad de una TC en los 4 días siguientes al inicio de la profilaxis de la TVP se eligió para tener en cuenta la variabilidad existente a la hora de realizar las exploraciones de imagen después del tratamiento, dado que se trata de un análisis retrospectivo. Se llevó a cabo un análisis por separado en los pacientes que recibieron HBPM s.c. o HNF s.c. en un plazo de 2 días y de 4 días tras el ingreso, y según el diagnóstico (HIC solamente, HIC+HIV). Se revisaron las historias clínicas de los pacientes que cumplían los criterios del estudio (Figura 1), con objeto de determinar las características demográficas basales y obtener una información clínica que incluía la puntuación de la National Institutes of Health Stroke Scale al ingreso y la puntuación de la escala de Rankin modificada al alta.

Tratamiento

Los pacientes con HIC y/o HIV fueron tratados según lo indicado por las guías de American Heart Association/American
y no recibieron Factor VII ni activador de plasminógeno tisular intraventricular; sin embargo, no se protocolizaron estrictamente las presiones arteriales en el periodo agudo post-hemorragia. En los pacientes que presentaron una hidrocefalia obstructiva, se colocó un drenaje ventricular externo. En nuestro centro se utilizaron dos formas de anticoagulación s.c. durante este periodo (HBPM = 40 mg de enoxaparina o 5.000 U de dalteparina s.c. una vez al día, HNF = 5.000 U de heparina s.c. 2 a 3 veces al día). La preferencia por la medicación y el momento de administración se dejaron a criterio del médico encargado del paciente. Se utilizaron dispositivos de compresión intermitente en todos los pacientes.

Radiología

Todas las TC se realizaron con el empleo de una técnica idéntica (grosor de corte, 5 mm; inclinación de soporte, 16). Las TC de ingreso fueron examinadas por los autores para confirmar la HIC y/o HIV. Todos los cálculos del volumen del hematoma fueron realizados por un mismo autor que no conocía el tratamiento asignado ni el resultado evaluado en el estudio. Se calculó el volumen de HIC en el interior del parénquima utilizando el método ABC/2\(^{12}\). El volumen de HIV se calculó utilizando un método publicado de delimitación manual de regiones de interés en cada área de presencia de sangre intraventricular de cada corte, multiplicado por el grosor del corte y sumado para obtener el volumen total de HIV\(^{13}\). Se tomó como volumen total de hematoma (VH) la suma del volumen de HIC y el volumen de HIV. El cambio del VH (\(\Delta\)vol) se definió como la diferencia entre el VH total en la primera TC post-tratamiento y el VH total de la TC de ingreso. La localización del hematoma se clasificó como profunda (tálamo, putamen, caudado), lobular u otros (HIV primaria, cerebeloso o de tronco encefálico).

Crecimiento del hematoma

Decidimos utilizar como variable de valoración primaria el crecimiento absoluto del hematoma y considerar el crecimiento significativo del hematoma como variable secundaria. El crecimiento significativo del hematoma se definió como un cambio del VH > 33% y un cambio absoluto del volumen ≥ 5 mL. Utilizamos el criterio de un cambio de volumen > 33%, ya que corresponde a un aumento del 10% del diámetro de una esfera y se ha utilizado ya en estudios previos de crecimiento del hematoma\(^{14}\). Se utilizó un \(\Delta\)vol absoluto de

Tabla 1. Características clínicas y radiológicas de los pacientes tratados con profilaxis farmacológica de la TVP en los 7 primeros días siguientes al ingreso

<table>
<thead>
<tr>
<th>Características clínicas</th>
<th>Total de pacientes (n = 73)</th>
<th>Pacientes sin DVE (n = 52)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media de edad, años (rango)</td>
<td>63 (37–93)</td>
<td>63 (37–87)</td>
</tr>
<tr>
<td>Sexo, varones/mujeres</td>
<td>40/33</td>
<td>29/23</td>
</tr>
<tr>
<td>Mediana (rango) de NIHSS al ingreso</td>
<td>11,5 (0–40)</td>
<td>10 (0–40)</td>
</tr>
<tr>
<td>Mediana (rango) de mRS al alta</td>
<td>4 (0–6)</td>
<td>4 (0–6)</td>
</tr>
<tr>
<td>DVE, %</td>
<td>21 (29%)</td>
<td>0</td>
</tr>
<tr>
<td>TVP o EP, %</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Características radiológicas</th>
<th>VH total</th>
<th>VH de HIC sola</th>
<th>VH total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media (rango) de VH al ingreso, mL</td>
<td>25,8±23,2 (0,6–90)</td>
<td>17,6±19,3 (0–90)</td>
<td>19,5±20,3 (0,6–90)</td>
</tr>
<tr>
<td>Media (rango) de VH post-tratamiento, mL</td>
<td>21,6±22,6 (0,5–108)</td>
<td>17,3±20,4 (0–108)</td>
<td>18±18,9 (0,7–80)</td>
</tr>
<tr>
<td>Media (rango) de (\Delta) del VH, mL</td>
<td>−4,3±11,0 (−41,9–23,5)</td>
<td>−0,3±8,8 (−35–38)</td>
<td>−1,5±6,8 (−35,0–19,2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Localización</th>
<th>Profunda, %</th>
<th>47 (64%)</th>
<th>31 (60%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lobular, %</td>
<td>14 (20%)</td>
<td>12 (23%)</td>
</tr>
<tr>
<td>Otras,* %</td>
<td>12 (16%)</td>
<td>9 (17%)</td>
<td></td>
</tr>
</tbody>
</table>

Profilaxis de TVP	Enoxaparina, %	50 (69%)	37 (71%)
	Heparina, %	20 (27%)	12 (23%)
	Dalteparina, %	3 (4%)	3 (6%)

*Otras indica cerebelosa, tronco encefálico, HIV primaria.
NIHSS indica National Institutes of Health Stroke Scale; mRS, escala de Rankin modificada; DVE, drenaje ventricular externo.

Figura 2. Distribución de la fecha de inicio de la profilaxis farmacológica de la TVP.
Wu y cols. La profilaxis de la TVP no conduce a expansión del hematoma en la HIC 77

Tabla 2. Características clínicas y radiológicas de los pacientes tratados con profilaxis farmacológica de la TVP en los 4 y los 2 primeros días siguientes al ingreso

<table>
<thead>
<tr>
<th>Características basales</th>
<th>En 4 Días (n = 50)</th>
<th>En 2 Días (n = 24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media de edad, años (rango)</td>
<td>62,78 (37–93)</td>
<td>63,91 (40–93)</td>
</tr>
<tr>
<td>Sexo, varones/mujeres</td>
<td>28/22</td>
<td>10/14</td>
</tr>
<tr>
<td>Media de volumen en TC inicial, mL</td>
<td>21,6 ± 22,7 (0,60–85,5)</td>
<td>20,1 ± 18,9 (0,6–75)</td>
</tr>
<tr>
<td>Media de volumen en TC final, mL</td>
<td>20,3 ± 24,4 (0,5–109)</td>
<td>19,5 ± 19,7 (0,7–69)</td>
</tr>
<tr>
<td>Media de Δ de volumen en la TC, mL</td>
<td>-1,3 ± 8,9 (-30,7–23,5)</td>
<td>-0,65 ± 5,2 (-18,5–12,9)</td>
</tr>
<tr>
<td>Localización</td>
<td>Profunda, %</td>
<td>30 (60%)</td>
</tr>
<tr>
<td></td>
<td>Lobular, %</td>
<td>11 (22%)</td>
</tr>
<tr>
<td></td>
<td>Otras,* %</td>
<td>9 (18%)</td>
</tr>
<tr>
<td>Profilaxis de TVP</td>
<td>Enoxaparina, %</td>
<td>37 (74%)</td>
</tr>
<tr>
<td></td>
<td>Heparina, %</td>
<td>12 (24%)</td>
</tr>
<tr>
<td></td>
<td>Dalteparina, %</td>
<td>1 (2%)</td>
</tr>
</tbody>
</table>

*Otras indica cerebelosa, tronco encefálico, HIV primaria.

NIHSS indica National Institutes of Health Stroke Scale; mRS, escala de Rankin modificada.

5 mL como valor de corte ya que los autores consideraron que un Δvol ≤ 5 mL era una causa improbable de deterioro clínico y también para tener en cuenta la imprecisión en el cálculo del volumen del hematoma utilizando la TC.

Análisis estadístico
Con el empleo del valor de corte de 5 mL y la DE de nuestros datos (25 mL), se realizaron cálculos del tamaño muestral/potencia estadística y se demostró que, con una correlación de 0,85, serían necesarios 61 pacientes para disponer de una potencia estadística del 80% en la detección de un Δvol de 5 mL. Se utilizaron las medias con DE o las medianas para las variables continuas. Las diferencias se evaluaron con pruebas de t, pruebas de χ², la prueba exacta de Fisher o la prueba de U de Mann-Whitney. Se utilizó un nivel de significación de 0,05 para evaluar la diferencia estadística. El análisis estadístico se realizó con el programa SAS 9.

Resultados
Identificamos a 73 pacientes que cumplían los criterios del estudio. Las características clínicas y radiológicas basales se indican en la Tabla 1. La media de edad era de 63 años y la mediana de la puntuación de la National Institutes of Health Stroke Scale al ingreso era de 11,5. Un total de 50 pacientes (69%) recibieron enoxaparina, 20 pacientes (27%) recibieron HNF y 3 pacientes (4%) recibieron dalteparina. El tiempo transcurrido entre el ingreso por HIC y la administración de la profilaxis para la TVP fue también diverso; la mayoría de las profilaxis de la TVP se administraron entre los días 2 y 5 (Figura 2). Globalmente, hubo un Δvol absoluto entre la TC previa y la posterior al tratamiento de -4,3 mL ± 11,0 mL (p = 0,0015). Al analizar solamente la parte de HIC del hematoma en la totalidad de los 73 pacientes se observó un Δvol absoluto de -0,3 mL ± 8,8 mL (p = 0,77). En los pacientes en los que no se colocó un drenaje ventricular externo, el Δvol absoluto fue de -1,5 mL ± 6,8 mL (p = 0,69).

Dos pacientes (2,7%) presentaron un crecimiento significativo del hematoma en el periodo de estudio. Uno de ellos recibió HBPM y el otro HNF, y en ambos casos la etiología de la hemorragia era la hipertensión arterial. No se identificó ningún patrón en lo relativo a las características clínicas y radiológicas de estos 2 pacientes que presentaron un crecimiento significativo del hematoma.

Analizamos por separado a los pacientes que recibieron una profilaxis de la TVP en un plazo de 4 días tras el ingreso, y los resultados mostraron un Δvol absoluto entre la TC previa y la posterior al tratamiento de -1,3 mL ± 8,9 mL (p = 0,31; Tabla 2). En los pacientes que recibieron la profilaxis de la TVP en un plazo de 2 días tras el ingreso, los datos mostraron un Δvol absoluto entre la TC previa y la posterior al tratamiento de -0,65 mL ± 5,2 mL (p = 0,54; Tabla 2).

Discusión
Que nosotros sepamos, este estudio es el primero en el que se presenta el crecimiento del hematoma en relación con el uso de anticoagulantes s.c. para la prevención de la TVP en la población con HIC y HIV. En el estudio recientemente publicado por Orken y cols., estos autores estudiaron la seguridad de HBPM y de las medias de compresión para la profilaxis de la TVP y sus efectos sobre el crecimiento del hematoma en los pacientes con HIC. Se observó que el tratamiento con HBPM (n = 39) y el empleo de medias de compresión (n = 36) para la prevención de la TVP/EP no se asociaban a un crecimiento del hematoma, pero no se indicó la frecuencia de HIC en la población en estudio ni el tiempo transcurrido hasta la administración de la medicación, más allá de que se administró después de las primeras 48 horas. Comparativamente, la mayoría de nuestros pacientes iniciaron el tratamiento de anticoagulación en menos de 2 a 5 días tras la hemorragia, y un 28% (n = 20) recibieron anticoagulantes en las primeras 48 horas siguientes al ingreso. En general, observamos que la administración de una profilaxis farmacológica para la TVP por vía s.c. en el periodo agudo (2 a 4 días) a subagudo (≤ 7 días) no se asoció a un crecimiento del hematoma. Los pacientes de nuestro estudio tenían tamaños de hematoma diversos, de entre 0,5 mL y 90 mL. Sin embargo, en el periodo subagudo, 2 pacientes presentaron una expansión significativa del hematoma, pero no fue posible identificar ningún patrón o factor que se asociara al crecimiento del hematoma.

No se observó tampoco un crecimiento del hematoma al dividir la población de pacientes según el diagnóstico (HIC sola o HIC + HIV) ni según la presencia de un drenaje ventricular externo. Sin embargo, la diferencia de Δvol en el grupo de HIC sola fue mucho menor que en el grupo de HIC + HIV, lo cual confirmaba que la HIV desempeña un papel en la resolución del hematoma. De los 36 pacientes con HIC+HIV, en 21...
se había colocado un drenaje ventricular externo y solamente identificamos a 1 paciente que presentó una hemorragia alrededor del catéter. En consecuencia, la instauración de un tratamiento con anticoagulantes s.c. en pacientes con drenajes ventriculares externos puede ser seguro, con unas tasas de complicaciones bajas. Sin embargo, nuestros datos no indican que los pacientes que fueron tratados en el periodo agudo tuvieran una mediana de puntuación de la National Institutes of Health Stroke Scale al ingreso inferior (9 antes del Día 4, 8,5 antes del Día 2) a la mediana de puntuación de la National Institutes of Health Stroke Scale de 11,5 observada en los pacientes tratados antes del Día 7 de ingreso. Esto puede indicar que hay una tendencia a retrasar la instauración de la anticoagulación s.c. en los pacientes con HIC en estado más grave o posiblemente que los pacientes con una puntuación más alta de la National Institutes of Health Stroke Scale al ingreso tienden a presentar recurrencias hemorrágicas tempranas que hacen que la administración de la anticoagulación s.c. sea más tardía.

Las guías actuales para el tratamiento de la HIC recomiendan el empleo de compresión neumática intermitente para la prevención del TEV, y se ha demostrado que su uso resulta eficaz. Aunque no hay datos aleatorizados, la adición de anticoagulantes s.c. a los dispositivos de compresión neumática intermitente debe aportar una protección adicional frente a la aparición del TEV. La amplia disponibilidad, el bajo coste y la eficacia probada de los anticoagulantes s.c. para la prevención del TEV pueden reducir las complicaciones de este tipo en la población con HIC/HIV altamente vulnerable. Nuestro estudio se suma a la literatura limitada existente y respalda nuevamente la seguridad de los anticoagulantes en el periodo agudo y subagudo tras la HIC.

Sin embargo, el estudio tiene la limitación de su naturaleza retrospectiva, el tamaño muestral pequeño y la inexactitud inherente a la medición del volumen del hematoma en la TC. Con la muestra pequeña utilizada, no fue posible evaluar la eficacia de HBPM o HNF s.c. en la prevención de la TVP o la EP; sin embargo, no se observó ningún caso de EP o TVP en la población en estudio. En la reducción global observada del hematoma puede haber contribuido en gran parte el drenaje de ventriculostomía y/o la regresión natural del propio hematoma; sin embargo, al examinar la parte de HIC de la totalidad de los 73 pacientes del estudio, no se observó un crecimiento del hematoma. Otro factor de confusión importante puede ser el control de la presión arterial, puesto que algunos autores han propuesto que el crecimiento del hematoma se asocia al grado de control de la hipertensión en los pacientes con HIC.

Los criterios de inclusión del estudio pueden haber influido en nuestros datos y resultados. En primer lugar, tan solo incluimos a pacientes que recibieron profilaxis para la TVP. Este sesgo de selección puede haber excluido a los pacientes que presentaron hemorragias más graves, con la posibilidad de un crecimiento temprano del hematoma, en los que el médico encargado puede haber optado por no utilizar anticoagulantes. Y a la inversa, a incluir solamente a pacientes en los que se habían realizado exploraciones de imagen de seguimiento, podemos haber descartado a una población de pacientes estables que recibieron anticoagulantes s.c. y que se mantuvieron clínicamente estables, y no requirieron por tanto una TC de seguimiento. Esto puede haber motivado que en este estudio estuvieran sobrerepresentados los pacientes con crecimientos del hematoma, puesto que la obtención de exploraciones de imagen de seguimiento es más probable en los pacientes que presentan un deterioro clínico. Finalmente, al optar por analizar solamente el volumen del hematoma de la primera TC posterior al tratamiento, limitamos nuestra capacidad de detectar una expresión tardía del hematoma.

En conclusión, los datos de este estudio sugieren que la administración s.c. de HBPM o HNF en pacientes con HIC y/o HIV para la profilaxis de la TVP en el periodo agudo o subagudo es generalmente segura. Está justificado un estudio prospectivo de la seguridad y la eficacia de los anticoagulantes s.c. en pacientes con HIC.

Fuentes de financiación
Este estudio fue financiado por National Institutes of Health Training Grant 5 T32 NS007412-12, Specialized Program for Translational Research in Acute Stroke (SPOTRIAS) Grant P50 NS 044227, el Howard Hughes Medical Institute, y la American Heart Association 0475008N.

Declaraciones de conflictos de intereses
Ninguna.

Bibliografía

Background and Purpose: Intracerebral hemorrhage (ICH) patients are at high risk of deep vein thrombosis (DVT). Current guidelines recommend subcutaneous administration of low-molecular weight heparin or unfractionated heparin for up to 4 days. However, there is insufficient evidence regarding the effect of pharmacological DVT prophylaxis on hematoma expansion in intracerebral hemorrhage with intraventricular extension.

Methods: We reviewed patients from July 2003 to December 2007 who had ICH or ICH with intraventricular hemorrhage (IVH), and who received subcutaneous heparin within 7 days of admission. Hematoma volume changes were measured using the ABC/2 formula and intraventricular hemorrhage extent was determined using previously published hand-drawn area methods.

Results: We included 73 patients with a median NIHSS score of 11.5. The median baseline hematoma volume was 25.8 mL ± 23.2 mL. Hematoma volume decreased by 4.3 mL ± 11.0 mL, and two patients showed hematoma expansion. Intravenous administration of heparin did not result in hematoma expansion in patients with ICH and IVH.

Conclusion: Pharmacological deep vein thrombosis prophylaxis does not lead to hematoma expansion in intracerebral hemorrhage with intraventricular extension.

Keywords: Anticoagulant, Deep Vein Thrombosis Prevention, Intracerebral Hemorrhage

方法

研究设计与研究人群

此项回顾性研究，搜集了我们 2003 年 7 月至 2007 年 12 月卒中登记中诊断为 ICH 的患者。有以下病因者不入选：肿瘤、动静脉畸形、动脉瘤以及未明确的病因。若有高血压病史且影像学有典型出血部位即诊断为高血压性脑出血。淀粉样变性脑出血的诊断则主要依靠临床方面的信息，包括高血压病史、发病及住院过程中的血压及影像学的支持。如果脑出血患者入院时的国际标准化比率升高，则诊断为凝血功能障碍相关的脑出血。如果病因不能确定为高血压性、淀粉样变性，或根据临床或影像学资料证明二者均有，则归类于不能明确病因的脑出血。

入院后确诊为 ICH 和 (或) IVH，在入院 7 天内接受皮下注射低分子肝素或普通肝素，并且在静脉血栓预防 4 天内复查头颅 CT 是 (N=73)，淀粉样变性 (N=7)，高血压 (N=61)，凝血功能障碍 (N=5)，否 (N=491)。患者按照美国心脏病学会 / 美国卒中协会的指南 [5] 治疗，未予以Ⅷ因子或 rt-PA；对出血急性期的血压并未严格控制。对于有阻塞性脑积水患者予以体外脑室引流。DVT 预防用药期间给予两种形式的处理，LMWH=40 mg 低分子肝素或 5000 U 达肝素钠皮下注射，每日一次；普通肝素=5000 U 肝素钠皮下注射，每日 1-2 次。药物的选择及服药时间则由其主治医生决定。对每位患者均配有间歇性加压设备。

影像学

所有的 CT 均使用相同的设备 (层厚 5 mm，机架倾斜 16)。入院时的 CT 片由本研究者阅读以证实 ICH 和 (或) IVH。所有的出血量均由同一个医师计算，且其不了解本研究的处理及结果。脑实质血肿体积的计算使用 ABC/2 法 [12]，脑室出血量的计算我们使用一种公认的手绘出血区域方法，把每个出血层面的出血面积乘以层厚，再把每个层面相加得到脑室全部出血量 [13]。脑实质出血量与脑室出血量之和被认为是总出血量 (HV)。总出血量的改变 (Δvol) 为治疗前第一次 CT 与入院后 CT 的总出血量的改变。血肿的位置分为深部 (丘脑、壳核、尾状核)、脑叶、其它 (主要包括脑室、小脑、脑干)。

血肿扩大

我们选择血肿绝对扩大为主要结果、明显扩大为次要结果。明显扩大定义为出血总体积变化大于 33%，绝对扩大为体积变化大于 5 mL，我们选择变化值为 33% 是因为它与球直径变化 10% 相一致，并且它也用于先前的血肿增大的研究 [14]。选择 Δvol=5

图 1 研究设计和人群
为绝对扩大的界限是因为我们认为 5 mL 不太可能引起临床症状的恶化，并且也有可能是因为 CT 不精确的出血量计算引起。

统计分析

以 5 mL 为界限，数据标准差为 25 mL，对样本大小及检验效能的计算等进行了较深入的研究。结果相关性为 0.85，它要求 61 例患者中有 80% 检测到体积变化为 5 mL。我们使用了标准差均数及连续性变量的中位数。差异分析使用 t 检验、卡方检验、Fisher 精确检验或 Mann-Whitney U 检验。统计学差异以 P=0.05 为水平衡量。统计分析工具为 SAS 9。
他们研究了低分子肝素与弹力袜预防 DVT 的安全性，以及在脑出血患者中，其使用对血肿扩大有无作用。他们发现低分子肝素（n=39）和弹力袜（n=36）预防 DVT/PE 与脑血肿扩大无关，但并没有说明研究中 IVH 患者所占的比例，也没有说明入院后预防用药时间（只提到在 48 小时后）[6]。相比之下，我们研究对象中大部分是在出血 2-5 天开始使用抗凝药，且 28%（n=20）是在入院 48 小时内。总的来说，我们发现急性期（2-4 天）至亚急性期（7 天）使用 DVT 预防药物皮下注射与血肿扩大无关。我们的研究对象脑出血量从 0.5 mL 至 90 mL 不等。而在亚急性期，有 2 例患者确实有显著的血肿扩大，但没有发现与血肿扩大相关的特点或因素。以诊断分类（单纯 ICH 和 ICH+IVH）及有无脑室外引流分类，均未见血肿增大。而 ICH 中 ICH+IVH 患者的 Δvol 最小，说明脑室出血在血肿消退的过程中起作用。在 36 例 ICH+IVH 患者中，有 21 例脑室外引流，我们只发现 1 例有导管周围出血。因此，对于脑室外引流患者皮下注射抗凝剂可能是安全的。关于脑出血患者皮下注射抗凝剂的安全性及有效性需要证实。

