Low Body Temperature Does Not Compromise the Treatment Effect of Alteplase

Jennifer S. Lees, MBChB; Nishant K. Mishra, MBBS; Monica Saini, MD; Patrick D. Lyden, MD; Ashfaq Shuaib, FRCPC; on behalf of the Virtual International Stroke Trials Archive (VISTA) Collaborators

Background and Purpose—Hypothermia is neuroprotective in ischemic stroke models. The influence of baseline body temperature on outcomes after thrombolytic therapy is unclear. We examined outcomes after alteplase treatment across baseline body temperature for patients with ischemic stroke in data held within the Virtual International Stroke Trials Archive (VISTA; 1998 to 2007).

Methods—We collated data on age, baseline severity (National Institutes of Health Stroke Scale), and 90-day modified Rankin Scale score on patients presenting with acute ischemic stroke. We compared 90-day modified Rankin Scale score between thrombolized and nonthrombolized comparators across baseline body temperature. We report age and baseline National Institutes of Health Stroke Scale-adjusted Cochran-Mantel-Haenszel probability value and proportional OR with 95% CI for improved modified Rankin Scale distribution. We report temperature profiles over 72 hours after stroke by treatment group.

Results—Rankin data were available for 5586 patients with acute ischemic stroke in VISTA (1980 received alteplase). Age and baseline severity were similar (age 68.0 ± 13.0 years versus 69.9 ± 12.3 years, National Institutes of Health Stroke Scale 14.2 ± 5.2 versus 13.0 ± 5.6). Alteplase was associated with improved outcome (OR, 1.49; 95% CI, 1.35 to 1.65, \(P < 0.0001 \)). Alteplase treatment effect was not associated with baseline temperature (\(P = 0.14 \)). Point estimates showed benefit of alteplase treatment across 35.5°C to 37.5°C but showed a negative trend >37.5°C. Alteplase did not influence temperature profiles over 72 hours after stroke.

Conclusions—There is no evidence of influence of body temperature on alteplase treatment response. These results are reassuring that low temperatures across a physiological range do not compromise therapeutic effect of alteplase. (Stroke. 2011;42:00-00.)

Key Words: body temperature ■ outcomes ■ thrombolysis

Alteplase is the only proven therapy available for patients with ischemic stroke presenting within 4.5 hours of symptom onset. Body temperature is an important factor that influences clinical outcome.\(^1\) Current recommendations suggest use of antipyretics for febrile patients with stroke.\(^2\) Ongoing clinical trials are examining the influence of induced hypothermia on neuroprotective mechanisms and prolongation of the therapeutic window.\(^3\) The influence of hypothermia on outcomes after acute stroke is of immense interest, but interpretation is confounded by contradictory data from experimental models and human studies.\(^4,^5\) To examine the influence of temperature on outcomes after thrombolytic therapy, we analyzed clinical data held within the Virtual International Stroke Trials Archive (VISTA).\(^6\) We report outcomes for various levels of baseline body temperature by comparing patients who received alteplase with those who did not.

Methods

Data Source and Patients

We collated data from neuroprotection trials conducted from 1998 to 2007 lodged within VISTA (www.vistacollaboration.org).\(^6\) Eligibility criteria required demography, body temperature, and complete outcome data on patients who had an ischemic stroke, who were offered neuroprotective agents, and on whom there was no influence of neuroprotective agents on the outcomes as reported in their respective clinical trials report.\(^7\)
Statistical Analyses

We performed nonrandomized adjusted comparison of outcomes between patients who received alteplase and patients who did not (control subjects) for various levels of baseline body temperature (32.8 to 35.5°C, 35.51 to 36.0°C, 36.01 to 36.5°C, 36.51 to 37.0°C, 37.01 to 37.5°C, 37.51 to 38.0°C, 38.0 to 40.5°C).

For each contrast, we compared the distribution of modified Rankin Scale at Day 90 between the 2 groups using the full range of scores, adjusted for age and baseline National Institutes of Health Stroke Scale. We used Cochran-Mantel-Haenszel statistic and then proportional odds logistic regression analysis to test for an association of outcome distribution with the use of alteplase.

We compared body temperature over the first 72 hours between thrombolyzed and control patients. Analyses were undertaken using SAS 9.2.

Results

We obtained data on 9665 patients. Of the excluded patients, 571 had hemorrhagic stroke, 36 had stroke of unknown etiology, 3767 had no recorded temperature data, 65 had ambiguous unit of temperature, and 386 had missing outcome data. Included patients totalled 5586. Baseline characteristics are shown in the Table.

Outcomes were better among all patients who received alteplase ($P<0.001$; OR, 1.49; 95% CI, 1.35 to 1.64; N=2097). Using proportional odds logistic regression, we found no overall interaction of baseline temperature with outcomes after thrombolytic therapy ($P=0.14$). No interaction was found when the test was conducted within each temperature bracket ($P>0.05$ for all groups). Figure 1 illustrates the odds for improved outcomes after alteplase treatment within various categories of baseline body temperature.

We found no difference in means of body temperature between treatment and control groups from 2 to 72 hours after symptom onset ($P=0.0001$ at baseline, 1, 2 hours; 8 hours $P=0.7$; 24 hours $P=0.2$; 72 hours $P=0.1$; Figure 2).

Discussion

We found no interaction between baseline temperature and outcomes after alteplase treatment in patients with acute ischemic stroke. We observed significantly improved outcomes across temperatures 35.51°C to 37°C. Significance was lost at temperatures <35.5°C and >37.5°C, although point estimates suggest that hyperthermia attenuates thrombolysis-associated benefit. Our data support an association between hyperthermia and poorer outcomes and support existing guidelines that recommend treatment of pyrexia.

In vitro evidence suggests that lower temperatures reduce the rate of fibrinolysis by alteplase, whereas hyperthermic stress may reduce endogenous fibrinolytic capacity. The
The overall efficacy of thrombolysis will depend on temperature effects on these individual components. Our included patients had temperatures mainly ranging from 35.5°C to 38°C. Induced hypothermia is likely to lower temperature to approximately 33°C. We cannot draw firm conclusions regarding effect of temperature <35.5°C, but our data are reassuring that low temperatures across a physiological range do not compromise alteplase activity.

This is an analysis of a large clinical trial data set. Included trials were closely monitored with verification of source data and end points. We used nonrandomized data, which we accept as a limitation of our analysis. Owing to the retrospec-
tive nature of our data, we cannot control for any selection bias. This underlines the desirability of confirming our findings in a prospectively designed study.

Source of Funding
Supported by a Chest Heart and Stroke Scotland research grant.

Disclosures
P.D.L. reports grant income from the National Institutes of Health, Veteran’s Affairs Department, American Heart Association, and is a consultant to Photothera Inc, CoAxia Inc, Benechil Inc, Mitsubishi Inc, and ZZ Biotech LLC. A.S. has received honorarium and is on Advisory boards of Sanofi-BMS, BI, Pfizer, Bayer, and Roche.

References
Low Body Temperature Does Not Compromise the Treatment Effect of Alteplase
Jennifer S. Lees, Nishant K. Mishra, Monica Saini, Patrick D. Lyden and Ashfaq Shuaib on behalf of the Virtual International Stroke Trials Archive (VISTA) Collaborators

Stroke. published online July 14, 2011;
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/early/2011/07/14/STROKEAHA.110.611210

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2013/10/08/STROKEAHA.110.611210.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/
Низкая температура тела не снижает терапевтический эффект альтеплазы

National Health Service, Lothian, Scotland; the Department of Medicine and Therapeutics, Gardiner Institute, University of Glasgow, Scotland; the Division of Neurology, Faculty of Medicine and Dentistry, Stroke Research Unit, University of Alberta, Alberta, Canada; and the Department of Neurology, Cedars-Sinai Medical Centre, Los Angeles, CA.

Предпосылки и цель исследования. Гипотермия оказывает нейропротекторное действие в моделях ишемического инсульта. Влияние исходной температуры тела на исход после проведения тромболитической терапии остается неизвестным. Изучили исходы после лечения альтеплазой с учетом исходной температуры тела в группе пациентов с ишемическим инсультом по данным, хранящимся в архиве Virtual International Stroke Trials Archive (VISTA: с 1998 по 2007 г.). Методы. Собирали данные о возрасте, исходной тяжести инсульта (оценка по шкале тяжести инсульта Национальных институтов здравоохранения, NIHSS), а также данные об оценке по модифицированной шкале Рэнкина (МШР) через 90 дней от начала заболевания у пациентов с острым ишемическим инсультом. Провели сравнение по МШР на 90-й день у пациентов, которые получали тромболитическую терапию и которым ее не проводили, с учетом исходной температуры тела. Привели данные о возрасте и исходной оценке по шкале NIH с внесением поправки на значения температуры тела по методу Кокран-Мантел-Ханзела и пропорциональному отношению шансов (ОШ) с 95% доверительными интервалами (ДИ) для улучшения распределения оценки по МШР. Привели данные о температурном профиле в течение 72 часов после начала инсульта в группах лечения. Результаты. В архиве VISTA были доступны данные об оценке по МШР у 5586 пациентов с острым ишемическим инсультом (1980 из них получили альтеплазу). Возраст пациентов и исходная тяжесть инсульта в группах лечения практически не отличались (возраст 68,0±13,0 лет и 69,9±12,3 года, оценка по шкале NIH 14,2±5,2 балла и 13,0±5,6 балла соответственно). Введение альтеплазы было ассоциировано с улучшением исходов (ОШ=1,49, 95% ДИ от 1,35 до 1,65; р<0,0001). Терапевтический эффект альтеплазы не был связан с исходной температурой тела (р=0,14). Точечные оценки показали, что терапевтический эффект альтеплазы был максимально выражен при ее введении при температуре тела от 35,5 °С до 37,5 °С, но отметили негативную тенденцию при температуре тела выше 37,5 °C. Введение альтеплазы не оказывало влияния на температурный профиль в течение 72 часов после начала инсульта. Выводы. Доказательств влияния температуры тела на терапевтический эффект альтеплазы не обнаружили. Эти результаты обесценивают в отношении отсутствия снижения терапевтического эффекта альтеплазы на фоне низкой температуры тела в пределах физиологической нормы.

Внутреннее введение альтеплазы является единственным методом лечения с доказанной эффективностью для пациентов с ишемическим инсультом, поступивших в течение 4,5 часов от момента появления симптомов. Температура тела является важным фактором, оказывающим влияние на клинический исход [1]. Современные рекомендации предлагают использовать жаропоникающие средства у лихорадящих пациентов с инсультом [2]. В продолжающихся в настоящее время клинических испытаниях проводится изучение влияния индуцированной гипотермии на нейропротекторные механизмы и расширение терапевтического окна [3]. Влияние гипотермии на исходы после острого инсульта представляет большой интерес, но интерпретация результатов ставится под сомнение в связи с наличием противоречивых данных, полученных в экспериментальных моделях и исследованиях с участием людей [4, 5]. Для изучения влияния температуры тела на исход после проведения тромболитической терапии проанализировали клинические данные, хранящиеся в архиве Virtual International Stroke Trials Archive (VISTA) [6]. Привели данные об исходах при различных уровнях исходной температуры тела путем сравнения данных пациентов, которые получали альтеплазу, и пациентов, которым тромболизис не проводили.

© American Heart Association, Inc., 2011
Адрес для корреспонденции: Nishant K. Mishra, MBBS, Department of Medicine and Therapeutics, Western Infirmary and Faculty of Medicine, University of Glasgow, 44 Church Street, Glasgow G11 6NT, Scotland.
E-mail: 0808124@clinmed.gla.ac.uk

Источники данных и пациенты. Сравнили результаты испытаний нейропротекторов, проведенных в период с 1998 по 2007 г., хранящиеся в архиве VISTA (www.vistacollaboration.org) [6]. В качестве критериев соответствия использовали демографические данные, температуру тела и полные данные об исходе у пациентов с ишемическим инсультом, которым назначали нейропротекторные препараты и у которых не было зарегистрировано влияния нейропротекторов на исход, согласно результатам соответствующих клинических испытаний [7].

Сtatистический анализ. Выполнили нерандомизированное сравнение исходов с внесением поправок в группу пациентов, получивших альтеплазу, и в группе пациентов, которым не проводили тромболитическую терапию (контрольная группа) для различных уровней исходной температуры тела (от 32,8 до 35,5 °C, от 35,51 до 36,0 °C, от 36,01 до 36,5 °C, от 36,51 до 37,0 °C, от 37,01 до 37,5 °C, от 37,51 до 38,0 °C, от 38,0 до 40,5 °C).

Для каждой группы сравнения изучали распределение оценок по модифицированной шкале Рэнкина на 90-й день в 2 группах пациентов с использованием полного диапазона баллов, с внесением поправок на возраст и исходную оценку по шкале тяжести инсульта Национальных институтов здравоохранения. Использовали метод Кокран-Мантела-Ханзела, а затем...
пропорциональный логистический регрессионный анализ рисков для проверки связи распределения исходов от факта проведения тромболитической терапии.

Сравнили температуру тела в течение первых 72 часов у группы пациентов, которым проводили тромболизис, и пациентов контрольной группы. Все статистические анализы выполняли с помощью программного обеспечения SAS 9.2.

Результаты

Получили данные 9665 пациентов. Из исключенных пациентов у 571 был геморрагический инсульт, у 36 пациентов — инсульт неизвестной этиологии, для 3767 отсутствовали зарегистрированные данные о температуре тела, у 65 — неоднозначные показатели температуры тела и для 386 пациентов не было данных об исходе. Всего в исследование включили данные 5586 пациентов.

Исходы были более благоприятными у всех пациентов, получивших альтеплазу (p=0,001; ОШ=1,49, 95% ДИ от 1,35 до 1,64; n=2097). При проведении анализа логистической регрессии пропорциональных рисков не удалось обнаружить общего взаимодействия исходной температуры тела с исходами после тромболитической терапии (p=0,14). При проведении анализа в рамках каждого температурного диапазона также не обнаружили взаимодействия (значение p>0,05 для всех групп). На рис. 1 показаны ОШ на улучшение исходов после лечения альтеплазой у пациентов различных категорий в зависимости от исходной температуры тела.

Различий в показателях температуры тела пациентов группы лечения и контрольной группы в течение 2—72 часов после появления симптомов инсульта не было (p<0,0001 — в начале исследования, через 1 и 2 часа; p=0,7 — через 8 часов; p=0,2 — через 24 часа; p=0,1 — через 72 часа; рис. 2).

Обсуждение

Зависимости между исходной температурой тела и исходами после лечения альтеплазой у пациентов с острым
Патология ишемическим инсультом не обнаружили. Наблюдали значительное улучшение исходов при температуре от 35,5 до 37,5 °C. Статистическая значимость снизилась при температуре ниже 35,5 °С и выше 37,5 °C, хотя точечные оценки свидетельствуют, что гипертермия снижает эффективность проведения тромболизиса. Полученные данные подтверждают наличие связи между гипертермией и неблагоприятными исходами [1, 4] и поддерживают современные стандарты, рекомендующие назначение жаропонижающих средств лихорадящим пациентам с инсультом [2].

Данные экспериментов in vitro свидетельствуют о том, что более низкие температуры сокращают скорость фибринолиза после введения альтеплазы [7], тогда как гипертермический стресс может снизить эндогенную фибринолитическую активность [8]. Общая эффективность тромболизиса будет зависеть от температурного воздействия на эти отдельные компоненты. У включенных в анализ пациентов температура варьировалась преимущественно в пределах от 35,5 до 38 °C. Индукционная гипотермия, скорее всего, вызывает более выраженное снижение температуры тела, приблизительно до 33 °C [9]. Невозможно сделать окончательных выводов относительно влияния температуры ниже 35,5 °C, но полученные результаты вмешивают уверенность, что низкая температура тела в пределах физиологической нормы не снижает активности альтеплазы.

В данной работе проанализировали большой набор данных клинических испытаний. Провели тщательную верификацию источников данных и конечных точек во всех включенных испытаниях. Использовали нерандомизированные данные, что стало ограничением данного анализа. Из-за ретроспективного характера данных невозможно исключить наличия систематических ошибок. Это подчеркивает необходимость подтверждения полученных результатов в исследовании с проспективным дизайном.

Таблица. Исходные характеристики пациентов, включенных в исследование.

<table>
<thead>
<tr>
<th>Параметры</th>
<th>Число пациентов</th>
<th>Возраст, годы</th>
<th>Исходная оценка по шкале NIH</th>
<th>Исходная температура тела, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Весь пациенты</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>контроль</td>
<td>3606</td>
<td>69,8</td>
<td>12,9</td>
<td>36,8</td>
</tr>
<tr>
<td>альтеплаза</td>
<td>1980</td>
<td>67,9</td>
<td>14,1</td>
<td>36,7</td>
</tr>
<tr>
<td>Группа A (<35,5 °C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>контроль</td>
<td>72</td>
<td>74,4</td>
<td>16,1</td>
<td>35,1</td>
</tr>
<tr>
<td>альтеплаза</td>
<td>65</td>
<td>68,5</td>
<td>16</td>
<td>35,2</td>
</tr>
<tr>
<td>Группа B (от 35,51 до 36 °C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>контроль</td>
<td>230</td>
<td>73,4</td>
<td>15,9</td>
<td>35,9</td>
</tr>
<tr>
<td>альтеплаза</td>
<td>210</td>
<td>70,2</td>
<td>14,9</td>
<td>35,9</td>
</tr>
<tr>
<td>Группа С (от 36,01 до 36,5 °C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>контроль</td>
<td>578</td>
<td>72,1</td>
<td>14,5</td>
<td>36,3</td>
</tr>
<tr>
<td>альтеплаза</td>
<td>418</td>
<td>69,2</td>
<td>14,8</td>
<td>36,3</td>
</tr>
<tr>
<td>Группа D (от 36,51 до 37 °C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>контроль</td>
<td>1208</td>
<td>70</td>
<td>12,9</td>
<td>36,8</td>
</tr>
<tr>
<td>альтеплаза</td>
<td>750</td>
<td>68</td>
<td>13,8</td>
<td>36,8</td>
</tr>
<tr>
<td>Группа E (от 37,01 до 37,5 °C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>контроль</td>
<td>1252</td>
<td>68,3</td>
<td>11,3</td>
<td>37,2</td>
</tr>
<tr>
<td>альтеплаза</td>
<td>451</td>
<td>66,5</td>
<td>13,2</td>
<td>37,2</td>
</tr>
<tr>
<td>Группа F (от 37,51 до 38 °C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>контроль</td>
<td>213</td>
<td>67,6</td>
<td>13,5</td>
<td>37,7</td>
</tr>
<tr>
<td>альтеплаза</td>
<td>68</td>
<td>61</td>
<td>13,3</td>
<td>37,7</td>
</tr>
<tr>
<td>Группа G (>38 °C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>контроль</td>
<td>53</td>
<td>66,8</td>
<td>14,6</td>
<td>38,5</td>
</tr>
<tr>
<td>альтеплаза</td>
<td>18</td>
<td>71,9</td>
<td>16,4</td>
<td>38,6</td>
</tr>
</tbody>
</table>

Литература

КОММЕНТАРИЙ

Как известно, тромболитическая терапия (ТЛТ) является одним из немногих доказанных по эффективности методов лечения ишемического инсульта (ИИ). Несмотря на уже имеющиеся, основанные на результатах многоцентровых исследований критерии отбора больных на ТЛТ, а также разработанные принципы мониторинга при тромболизисе, вопросы оптимизации проведения ТЛТ остаются актуальными. В этом плане изучение и анализ данных международного регистра ТЛТ (SITS) или материалов архива международных многоцентровых исследований представляет большую ценность. Так, в данной статье на основе данных архива VISTA определялась связь значений температуры тела пациентов в диапазонах распределения при поступлении с исходами после ТЛТ, а также влияние ТЛТ на температурный профиль. Имеются обоснованные мотивационные позиции представленного исследования. На основе экспериментальных моделей и большого числа клинических исследований установлено, что повышение температуры тела при любых повреждениях головного мозга приводит к выбросу возбуждающих аминокислот, деполяризации клеточных мембран с дестабилизацией цитоскелета, инициированию свободнорадикального окисления, нарушению гематоэнцефалического барьера и вторичному ишемическому повреждению. В усло- виях ИИ гипертермия еще более усугубляет весь ишемический патобиохимический каскад в зоне гипоперфузии, и контроль температуры тела (не выше 37,5 °С) входит в международные рекомендации мониторинга и ведения больных ИИ в острейшем периоде. С другой стороны, постоянно проводятся исследования по определению режимов и технологий гипотермии в целях нейропротекции, в т.ч. при ТЛТ, что приобретает особый интерес и возможную перспективность гипотермии в условиях, когда в рекомендациях ESO подчеркнуто, что на сегодняшний день нейропротекторов с доказанной эффективностью не существует.

ТЛТ как метод реперфузионной терапии при ИИ наиболее эффективен в ранние сроки клинической манифестации инсульта. Имея абсолютное теоретическое обоснование, учитывая механизмы ишемии и миши dél воздействия, нейропротекторная терапия должна решать основные задачи — уменьшение объема очага ишемического повреждения, а для ТЛТ это и расширение "терапевтического окна", и уменьшение степени реперфузионного повреждения. Вопрос реперфузионного повреждения при ТЛТ представляет особую актуальность не только в связи с фактами реканализационных эффектов, развитием феномена "невосстановленного кровотока", особенно при проведении тромболизиса в поздние сроки, но и с тем, что сам тромболитик, воздействуя на систему клеточных и эндотелиальных металлопротеиназ, способствует усугублению повреждения гематоэнцефалического барьера, геморрагической трансформации (ГТ) очага. При условии симптомности последней, в случае с реперфузионным отеком головного мозга, ГТ является наиболее грозным негативным эффектом ТЛТ. Кроме того, температурный фактор может влиять на систему гомостаза, меняя фибринолитические свойства тромболитика — тканевого активатора плазминогена.

Данная статья дает основание для дальнейшего изучения и определения наиболее оптимального температурного режима реперфузионного проведения ТЛТ, наряду с известными рекомендованными значениями показателей гемодинамики, биохимии крови, составляющих условия проведения ТЛТ. В представленных в статье результатах исследований показаны тенденции к наиболее благоприятному течению и лучшим исходам ТЛТ у больных с температурой тела ниже 37,5 °С. При этом отмечено, что более низкие значения температуры не ухудшают результаты тромболизиса, что представляет несомненный интерес и еще раз подтверждает необходимость контроля температурного профиля и коррекции гипотермии в рамках рекомендуемых ESO и ASA положений.

Д.Р. Хасанова,
руководитель головного сосудистого центра РТ,
кафедра неврологии и нейрохирургии ФПК и ППС КГМУ,
доктор медицинских наук, профессор