Incidence and Risk Factors of Recurrence After Endovascular Treatment of Intracranial Verteobasilar Dissecting Aneurysms

Byung Moon Kim, MD; Yong Sam Shin, MD; Se-Hyuk Kim, MD; Sang Hyun Suh, MD; Yon-Kwon Ihn, MD; Dong Ik Kim, MD; Dong Joon Kim, MD; Sung Il Park, MD

Background and Purpose—The incidence and risk factors for recurrence after endovascular treatment of intracranial vertebrobasilar dissecting aneurysms (VBDAs) have not been studied. We aimed to evaluate the incidence and risk factors for recurrence after endovascular treatment of VBDAs.

Methods—A total of 111 patients (mean age, 45±10 years) underwent endovascular treatment for 119 VBDAs (ruptured/unruptured=73:46). Incidence and risk factors for recurrence were retrospectively evaluated.

Results—Sixty-two VBDAs were treated by a reconstructive technique by using 1 to 3 overlapping stents with or without coiling, and 57 VBDAs were treated by a deconstructive technique by using proximal occlusion or internal trapping at the dissected segment of the parent artery. Follow-up angiography was available for 97 VBDAs (81.5%) in 89 patients at 3 days to 48 months (median, 13 months) after treatment. There were 13 recurrences: 6 had rebleeding but 7 had no rebleeding. All 6 hemorrhagic recurrences had initially presented with a ruptured form. Ten recurrences were confirmed by angiography, but 3 recurrences with rebleeding did not receive follow-up angiography. The rate of post-treatment rebleeding did not differ between reconstructive and deconstructive treatments. Involvement of the posterior inferior cerebellar artery origin was the only risk factor for recurrence.

Conclusions—There was a 13% recurrence after endovascular treatment of VBDAs. Posterior inferior cerebellar artery origin involvement was the only independent risk factor for recurrence after endovascular treatment of VBDAs. (Stroke. 2011;42:00-00.)

Key Words: aneurysm • dissection • vertebrobasilar artery

Intracranial vertebrobasilar dissection (VBD) is a well-known cause of subarachnoid hemorrhage (SAH) or posterior circulation stroke affecting young or middle-aged adults. The VBD may form an aneurysmal dilatation of the vertebrobasilar arterial trunk, a so-called vertebrobasilar dissecting aneurysm (VBDA). Endovascular treatment is now well established as a major tool for treating intracranial berry aneurysms. Applied to the intracranial VBDA, endovascular treatment has improved clinical outcomes. Recurrence rates and risk factors for recurrence after endovascular treatment in intracranial berry aneurysms have been widely discussed. The aim of this study was to retrospectively evaluate the incidence and risk factors for recurrence after endovascular treatment for intracranial VBDAs. To our knowledge, these have not yet been studied.

Patients and Methods

The institutional review boards of all participating hospitals approved this retrospective study and waived informed consent. We recruited all patients who had undergone endovascular treatment for intracranial VBDAs from neurointerventional databases at 4 tertiary referral hospitals from January 2001 through December 2008. All subjects met the following inclusion criteria: (1) acute clinical symptoms and signs relevant to VBDA; (2) angiographic evidence of VBDA, that is, aneurysmal dilatation of the intracranial vertebrobasilar arterial trunk, with or without the pearl-and-string sign on digital subtraction angiography; and (3) having undergone endovascular treatment for the VBDA. Clinical symptoms and signs relevant to VBDA were SAH, ischemic symptoms of the posterior circulation, sudden onset of severe posterior headache, or a combination of these. Exclusion criteria were as follows: (1) definitely traumatic VBD due to major trauma; (2) iatrogenic VBD; (3) VBD without aneurysmal dilatation; (4) laboratory or angiographic findings suggestive of vasculitis or fibromuscular dysplasia; or (5) not having undergone endovascular treatment. One hundred eleven patients
(male/female=70:41; mean age, 45±10 years; range, 24 to 78 years) underwent endovascular treatment for 119 VBDAs during the same period. Eight patients were treated for bilateral VBDAs. Seventy-three VBDAs (61.3%) presented with SAH and 46 VBDAs presented without SAH. Angiographic findings were analyzed with respect to the location and extent of the dissecting aneurysm (vertebral artery [VA], basilar artery, or both), sufficiency of a collateral circulation, and whether or not the dissecting aneurysm involved the origin of the posterior inferior cerebellar artery (PICA). Treatment method, incidence of post-treatment recurrence, and risk factors for recurrence were retrospectively evaluated.

Treatment and Follow-Up Angiography

Either a deconstructive or a reconstructive endovascular treatment was performed in each VBA. A deconstructive treatment sacrifices the parent artery; a proximal occlusion (PO) of the parent artery is performed by using balloons or coils at the segment proximal to the VBA, and internal coil trapping (IT) is coil embolization of the parent artery at the dissected segment. When a deconstructive treatment was considered for cases in which the contralateral VA and both posterior communicating arteries were hypoplastic and the patient’s clinical condition allowed, a balloon test occlusion was performed at the ipsilateral VA proximal to the involved segment. When IT was used for VBA that involved the PICA origin, the dissected segment, including the ruptured portion that either had a daughter sac or was the most notably dilated, was embolized, but the PICA origin was preserved (Figure 1). Balloon test occlusion of the PICA was not performed because balloon test occlusion at the PICA origin, involving the dissecting aneurysm, was thought to be too difficult and risky. In contrast, reconstructive treatments preserve the parent artery and use 1 to 3 overlapping stents, alone or with coating. When treating VBAs involving the PICA origin with stent(s) and coils, a small portion of the dissecting aneurysm from which the PICA originated was left without coil embolization. That is, when the PICA origin was involved, the dissecting aneurysm was left partially open (through IT or stenting with coiling) or entirely open (through PO or stenting alone) to preserve blood flow to the PICA. The treatment type was determined on a case-by-case basis at the discretion of each interventional neuroradiologist, according to the presenting symptoms; hemodynamic status, including sufficiency of the collateral supply; and anatomic features of the vertebrobasilar artery. In the early period of the study, a balloon-expandable coronary stent was used for the reconstructive treatment. Self-expanding neurovascular stents (Neuroform, Boston Scientific, or Enterprise, Codman) have been used preferably since their introduction. All patients received an intravenous heparin load of 3000 to 5000 IU immediately after guiding catheter placement and then 1000 IU every hour during the procedure. Heparin was stopped immediately after completion of the procedure. The patients with ruptured VBAs who underwent a reconstructive treatment received a loading dose of dual antiplatelet medication (100 to 325 mg aspirin and 300 mg clopidogrel) immediately after completion of the procedure. The patients with unruptured VBAs who underwent a reconstructive treatment received dual antiplatelet premedication (100 to 325 mg aspirin and 75 mg clopidogrel) for 3 to 5 days before treatment. Dual antiplatelet medication was maintained for 12 to 24 weeks and then changed to aspirin monotherapy indefinitely.

For ruptured VBAs treated with a reconstructive treatment, follow-up angiography was performed at 1 to 4 weeks, 3 to 6 months, and then 12 to 24 months. For unruptured VBAs treated with a reconstructive treatment, follow-up angiography was scheduled at 3 to 6 months and then at 12 to 24 months. After deconstructive treatment, follow-up angiography was performed at the treating physician’s discretion on a case-by-case basis, considering presentation (ruptured or unruptured), anatomic factors (PICA or basilar artery involvement), and treatment type (PO or IT).

Post-Treatment Recurrence

Post-treatment recurrence was diagnosed when rebleeding occurred or when angiographic recurrence was confirmed. Angiographic recurrence after deconstructive treatment was defined as the presence of an enlarged dissecting aneurysm, with or without recanalization of the parent artery. After reconstructive treatment, angiographic recurrence was defined as a substantial increase in the contrast medium-filled portion of the dissecting aneurysm compared with a control angiogram taken immediately after treatment.

Statistical Analysis

Statistical analysis was performed with SPSS for Windows (version 15.0; SPSS, Chicago, IL). An unpaired t test or a Mann-Whitney U
test was used for continuous variables, as appropriate. The χ^2 test or Fisher exact test was used for categorical variables, as appropriate. The following variables were analyzed: age, sex, presenting symptom (ruptured versus unruptured), diabetes mellitus, hypertension, current smoking, bilateral VA involvement, basilar artery involvement, involvement of the PICA origin, and type of treatment (reconstructive versus deconstructive). Univariate analysis was performed to determine the association of post-treatment recurrence with other factors. Forward stepwise logistic-regression analysis was then performed to determine the independent association of post-treatment recurrence with other factors. The cutoff in the univariate analysis, defined as the requirement for inclusion in the logistic-regression analysis, was $P<0.20$. A probability value <0.05 for a 95% confidence interval was considered statistically significant.

Results

Sixty-two VBDAs were treated by a reconstructive method, by using 1 to 3 overlapping stents alone $(n=35; 10$ ruptured, 25 unruptured), a single stent with coiling $(n=12; 3$ ruptured, 9 unruptured), and 2 or 3 overlapping stents with coiling $(n=15; 15$ ruptured). The remaining 57 VBDAs were treated by a deconstructive method by using IT $(n=40; 37$ ruptured, 3 unruptured) and PO $(n=17; 8$ ruptured, 9 unruptured). All surviving patients were clinically followed up for a mean of 35 months (range, 15 to 84 months). Clinical outcomes were favorable (modified Rankin Scale score, 0 to 2) in all 38 unruptured VBDAs patients and in 56 of 73 ruptured VBDAs patients. Seventeen ruptured VBDAs patients had unfavorable outcomes. Nine ruptured VBDAs patients died, and 5 deaths were due to rebleeding.

Follow-up angiography was available for 97 VBDAs (81.5%) in 89 patients (80.2%) at 3 days to 48 months (median, 13 months) after treatment. Fifty-nine (95.2%) of 62 VBDAs treated with a reconstructive method (1 to 3 overlapping stents alone, $n=34$; single stent with coiling, $n=11$; 2 or 3 overlapping stents with coiling, $n=14$) and 38 (66.7%) of 57 VBDAs treated with a deconstructive method (PO, $n=15$; IT, $n=23$) underwent follow-up angiography. For the patients with IT, follow-up angiography was performed when the VBDAs involved the PICA origin and/or when magnetic resonance or computed tomography angiography raised the suspicion of recurrence or when symptoms recurred. Therefore, most VBDAs that did not undergo angiographic follow-up were treated with IT. The Table summarizes the characteristics of VBDAs with post-treatment recurrence and risk factors for recurrence. Post-treatment rebleeding occurred in 6 patients, 2 and 4 of whom received reconstructive treatment and deconstructive treatment, respectively. As mentioned earlier, 5 of the 6 patients with rebleeding died. Of the 2 patients who had rebleeding after reconstructive treatment, 1 had received a single stent for a basilar artery dissecting aneurysm 3 days earlier. The patient showed an enlarged dissecting aneurysm on follow-up angiography and was re-treated with IT, as previously reported.5 The other received a single stent with coiling for a VBD that involved the PICA origin; SAH recurred in this patient 3 days after treatment. The patient did not receive follow-up angiography due to poor condition and subsequently died. In the 4 patients who had rebleeding after deconstructive treatments, 3 of the VBDAs involved the PICA origin. Two were treated with IT and the other 2 with PO. Of the 2 patients with rebleeding after IT, 1 experienced rebleeding 3 days after treatment and showed recanalization of the parent artery, with enlargement of the dissecting aneurysm on a follow-up angiogram. This patient was re-treated with further coiling of the affected VA and was the only survivor after rebleeding, but with an unfavorable outcome (modified Rankin Scale score=4). The other had rebleeding 8 hours after treatment and did not undergo follow-up angiography. Of the 2 VBDAs patients who had rebleeding after PO, 1 had rebleeding 15 days after treatment and showed an enlargement of the dissecting aneurysm due to retrograde flow from the contralateral VA to the PICA (Figure 2). The patient did not receive further treatment due to poor condition. The other had rebleeding 4 days after treatment and did not undergo follow-up angiography. Angiographic recurrence without hemorrhage was confirmed in 7 VBDAs, 3 of which initially presented with a ruptured form, but the other 4 presented with an unruptured form. Overall, when 3 VBDAs with rebleeding but without angiographic follow-up were considered recurrences, there were 13 post-treatment recurrences (13%) in 100 VBDAs. The rate of post-treatment recurrence did not differ between reconstructive and deconstructive treatments or between ruptured and unruptured VBDAs. Bilateral VA involvement and involvement of the PICA origin were risk factors for post-treatment recurrences on univariate analysis. PICA origin involvement remained the only independent risk factor of recurrence (the Table).

Discussion

Intracranial VBDAs is increasingly diagnosed as a cause of SAH or posterior circulation ischemia, especially in young to middle-aged adults.1,2 Because surgery involves high risks for treatment-related morbidity and mortality,7 an endovascular method is preferred in treating VBDAs. There have been many small case series of treating VBDAs with endovascular methods.$^3–5,8–10$ Many cases showing recurrent VBDAs with or without SAH after endovascular treatment have been reported.$^5,9,10–17$ Post-treatment recurrence may be more dangerous in dissecting aneurysms than in Berry aneurysms. However, dissecting aneurysms occur far less frequently than do Berry aneurysms, and thus, the incidence and risk factors for recurrence after endovascular treatment could not be evaluated in a large case series. To our knowledge, the present case series is the first to assess the incidence of post-treatment recurrence and risk factors for recurrence after endovascular treatment of VBDAs. Overall, the rate of post-treatment recurrence in this study was 13%. The true incidence of recurrence after endovascular treatment of VBDAs is uncertain because angiographic follow-up results were not available for all patients. In this study, all VBDAs patients without angiographic follow-up and rebleeding were clinically followed up and were asymptomatic, and most of them were treated by IT; in these patients, post-treatment recurrence was unlikely to occur. Therefore, the true incidence of post-treatment recurrence is likely to be lower than 13%. If none of the patients without angiographic follow-up and rebleeding had post-treatment recurrence, the rate of post-treatment recurrence would be 10.9% (13 of 119). Therefore, the true incidence of post-treatment recurrence in
this study might fall between 10.9% and 13%. We note in particular that involvement of the PICA origin was the only independent risk factor for recurrence after endovascular treatment of VBDAs (Table). When the PICA origin was involved, neither deconstructive nor reconstructive treatment could completely obliterate the dissected segment because blood flow to the PICA should be preserved. Avoiding complete obliteration of the VBDA necessarily allows continuous antegrade or retrograde blood flow through the remnant dissecting aneurysm sac to the PICA. The pressure does not decrease measurably in the VA or the PICA distal to the occlusion of the unilateral VA at the atlas; hence, persistent flow through the unprotected remnant dissecting aneurysm toward the PICA may have caused the recurrence. In Berry aneurysms with a branch incorporated into the sac, a similar hemodynamic status may be present after endovascular coiling that preserves the incorporated branch. However, the incidence of recurrence after coiling was not detectably more frequent in aneurysms with an incorporated branch than in aneurysms without an incorporated branch.

This may be explained by the greater fragility in the wall of a dissecting aneurysm than in the Berry aneurysm wall; continuous blood flow through a remnant aneurysm sac to an incorporated branch may potentially increase the possibility of recurrence in a dissecting aneurysm more so than in a Berry aneurysm. Alternatively, the initial dissection may involve the PICA itself, as well as the VA segment harboring the PICA origin. In 2 patients in this series, follow-up angiography showed examples of the latter explanation (Figure 3). Given the higher recurrence rate of VBDA with PICA origin involvement and the disastrous outcome of rebleeding, deconstructive treatment including PICA occlusion should be considered, especially in ruptured VBDAs with PICA origin involvement. PICA occlusion may be more tolerable than expected. However, if the contralateral PICA is absent and the ipsilateral, anterior inferior cerebellar artery is hypoplastic, the occlusion of the affected PICA in ruptured VBDDAs may cause a large cerebellar infarct, requiring posterior craniectomy for decompression. Therefore, under such anatomic conditions, an occipital artery–PICA bypass surgery

<table>
<thead>
<tr>
<th>Variables</th>
<th>Yes (n=13)</th>
<th>No (n=87)</th>
<th>P, Univariate</th>
<th>P, Regression (OR, 95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean±SD, y</td>
<td>42±9</td>
<td>46±9</td>
<td>0.136*</td>
<td>0.071 (0.906, 0.813–1.008)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td>0.074</td>
<td>0.143 (3.152, 0.678–14.656)</td>
</tr>
<tr>
<td>Male (n=61)</td>
<td>5 (8.2%)</td>
<td>56 (91.8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female (n=39)</td>
<td>8 (20.5%)</td>
<td>31 (79.5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presentation</td>
<td></td>
<td></td>
<td>0.379</td>
<td></td>
</tr>
<tr>
<td>Rupture (n=58)</td>
<td>9 (15.5%)</td>
<td>49 (84.5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No rupture (n=42)</td>
<td>4 (9.5%)</td>
<td>38 (90.5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
<td></td>
<td>0.375</td>
<td></td>
</tr>
<tr>
<td>Yes (n=5)</td>
<td>0</td>
<td>5 (100%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No (n=95)</td>
<td>13 (13.7%)</td>
<td>82 (86.3%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
<td></td>
<td>0.482</td>
<td></td>
</tr>
<tr>
<td>Yes (n=14)</td>
<td>1 (7.1%)</td>
<td>13 (92.9%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No (n=86)</td>
<td>12 (20.0%)</td>
<td>74 (80.0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoking</td>
<td></td>
<td></td>
<td>0.148</td>
<td>0.712 (0.707, 0.112–4.472)</td>
</tr>
<tr>
<td>Yes (n=33)</td>
<td>2 (6.1%)</td>
<td>31 (93.9%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No (n=67)</td>
<td>11 (16.4%)</td>
<td>56 (83.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bilateral involvement</td>
<td></td>
<td></td>
<td>0.040</td>
<td>0.458 (1.744, 0.401–7.588)</td>
</tr>
<tr>
<td>Yes (n=18)</td>
<td>5 (27.8%)</td>
<td>13 (72.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No (n=82)</td>
<td>8 (9.8%)</td>
<td>74 (90.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basilar artery involvement</td>
<td></td>
<td></td>
<td>0.766</td>
<td></td>
</tr>
<tr>
<td>Yes (n=10)</td>
<td>1 (10.0%)</td>
<td>9 (90.0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No (n=90)</td>
<td>12 (13.3%)</td>
<td>78 (86.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PICA involvement</td>
<td></td>
<td></td>
<td>0.020</td>
<td>0.013 (8.026, 1.561–41.259)</td>
</tr>
<tr>
<td>Yes (n=47)</td>
<td>10 (21.3%)</td>
<td>37 (78.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No (n=53)</td>
<td>3 (5.7%)</td>
<td>50 (94.3%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td></td>
<td></td>
<td>0.313</td>
<td></td>
</tr>
<tr>
<td>Reconstructive (n=59)</td>
<td>6 (10.2%)</td>
<td>53 (89.8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deconstructive (n=41)</td>
<td>7 (17.1%)</td>
<td>34 (82.9%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P, univariate, is the P value on univariate analysis. P, regression, is the P value on logistic regression analysis.

OR indicates odds ratio; CI, confidence interval; PICA, posterior inferior cerebellar artery; SD, standard deviation.

*Mann-Whitney U test.
may be performed. Additional study on IT including the PICA origin for treatment of ruptured VBDA's is required. In addition, because all rebleeding events but 1 occurred within 4 days after the initial treatment, very early angiographic follow-up should be considered, especially in cases of a ruptured VBDA with PICA involvement. In general, post-treatment recurrence of VBDA's has been expected to occur less frequently after deconstructive treatment than after reconstructive treatment. Contrary to expectation, the rate of post-treatment recurrence was not different between the deconstructive and reconstructive treatments (the Table) in our study. It is well known that stent placement decreases wall shear stress in the aneurysm wall in proportion to the number of overlapping stents. As in many previous case studies, this study showed promising results for the use of multiple overlapping stents, with or without coiling, in

![Figure 2](image1.png)

Figure 2. Angiograms in a 45-year-old man presenting with subarachnoid hemorrhage. Frontal (A) and lateral left vertebral (B) angiograms after proximal occlusion of the right vertebral artery with detachable coils (asterisk) reveal retrograde contrast-medium filling of a small dissecting aneurysm that involves the origin of the right posterior inferior cerebellar artery. Follow-up frontal (C) and lateral (D) angiograms after rebleeding show the enlarged dissecting aneurysm (arrow). Asterisks indicate coil masses used for proximal occlusion of right vertebral artery.

![Figure 3](image2.png)

Figure 3. Angiograms in a 40-year-old man presenting with sudden onset of severe posterior headache and ischemia. Frontal (A) and lateral (B) angiograms reveal a dissecting aneurysm at the segment of the left vertebral artery harboring the origin of the posterior inferior cerebellar artery (black arrow). Completion angiogram (C) after overlapping of 2 coronary stents shows decreased filling and stasis of the contrast medium in the dissecting aneurysm (white arrow) and preserved blood flow to the posterior inferior cerebellar artery (black arrow). Twelve-month follow-up angiogram (D) reveals reconstruction of the vertebral artery with disappearance of the dissecting aneurysm (black arrow) but a new aneurysm formation (asterisk) at the proximal trunk of the posterior inferior cerebellar artery.
the treatment of VBDAs. Newly developed flow diverters, which have far less porosity than conventional neurovascular or coronary stents, may play a decisive role in reconstructive treatment of VBDAs.27,28

Limitations of this study include the retrospective design, which excluded randomization and access to certain data. The decision to use a reconstructive or deconstructive method, for example, was made on a case-by-case basis at the discretion of each interventional neuroradiologist. Follow-up angiography of the VBA without rebleeding was unavailable for 18.5%. Because all VBA patients without follow-up angiography and rebleeding were clinically followed up and were asymptomatic and most of them were treated by IT, the true incidence of post-treatment recurrence may be slightly lower than we observed. As a final note, 3 VBDAs with rebleeding but without angiographic follow-up were assumed to have a post-treatment recurrence. Because these 3 VBDAs presented with SAH and their post-treatment rebleeding occurred within 4 days after initial treatment, it is reasonable to assume that recurrent VBA caused this rebleeding.

In conclusion, there was a 13% recurrence rate after endovascular treatment of intracranial VBA. The rate of post-treatment recurrence did not differ between the reconstructive and deconstructive endovascular treatments. Involvement of the PICA origin by the VBA was the only independent risk factor for recurrence after endovascular treatment.

Sources of Funding

This study was supported by both a faculty grant of the Yonsei University College of Medicine for 2009 (6-2009-0080) and a grant (No. A085136) of the Korea Healthcare Technology R&D Project, Ministry for Health, Welfare & Family Affairs, Republic of Korea.

Disclosures

None.

References

Incidence and Risk Factors of Recurrence After Endovascular Treatment of Intracranial Vertebrobasilar Dissecting Aneurysms
Byung Moon Kim, Yong Sam Shin, Se-Hyuk Kim, Sang Hyun Suh, Yon-Kwon Ihn, Dong Ik Kim, Dong Joon Kim and Sung Il Park

Stroke. published online July 21, 2011;
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/early/2011/07/21/STROKEAHA.111.617381

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2013/10/08/STROKEAHA.111.617381.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/
Частота и факторы риска развития рецидивов после эндоваскулярного лечения расслаивающих аневrizм внутримозговых артерий венечнопредсердного бассейна

Предпосылки и цель исследования. Частота и факторы риска развития рецидивов после эндоваскулярного лечения расслаивающих аневrizм внутримозговых сосудов венечнопредсердной артериальной системы (РАВБАС) на сегодняшний момент не изучены. Цель исследования заключалась в оценке частоты рецидивов и факторов риска их развития после эндоваскулярного лечения РАВБАС.

Методы. В общей сложности проведено эндоваскулярное лечение 111 пациентам (средний возраст 45±10 лет) по поводу 119 РАВБАС (разорвавшиеся/неразорвавшиеся 73/46). Затем ретроспективно оценили частоту встречаемости и факторы риска развития рецидивов после эндоваскулярного лечения. Результаты. Шестисотику двум пациентам с РАВБАС проведено эндоваскулярное лечение реконструктивным методом с использованием от 1 до 3 перекрывающихся стентов с или без койлинга, а лечение 57 пациентов с РАВБАС провели деструктивным методом путем окклюзии проксимальных отделов сосуда или треппингом расслоенного сегмента артерии. Ангиографию в период наблюдений выполнили 97 (81,5%) пациентам с РАВБАС, из которых 89 — в период от 3 дней до 48 месяцев (в среднем 13 месяцев) после лечения. Зарегистрировали 13 случаев рецидива: 6 с повторным кровоизлиянием и 7 — без развития кровоизлияния. Все 6 рецидивов с кровоизлияниями развивались у пациентов, первоначально поступивших на лечение по поводу разорвавшейся аневrizмы. Из всех случаев рецидивов 10 были подтверждены результатами ангиографического исследования, однако в 3 случаях при развитии у пациентов повторных кровоизлияний выполнить ангиографическое исследование не удалось. Частота развития рецидивов после эндоваскулярного лечения не различалась в группах реконструктивного и деструктивного вмешательств. Единственным независимым фактором риска развития рецидива было наличие аневrizмы в месте отхождения задней нижней мозжечковой артерии (отношение шансов [ОШ]=8,026, 95% доверительный интервал [ДИ] от 1,561 до 41,259, р=0,013).

Выводы. После эндоваскулярного лечения РАВБАС развитие рецидивов зарегистрировали в 13% случаев. Единственным независимым фактором риска развития рецидива после эндоваскулярного лечения РАВБАС являлось наличие аневризмы в месте отхождения задней нижней мозжечковой артерии.

Ключевые слова: аневризма (aneurysm), диссекция (dissection), венечнопредсердная артериальная система (vertebrobasilar artery)

Диссекция артерий в венечнопредсердном артериальном бассейне (ДАВБАБ) является известной причиной развития субарахноидального кровоизлияния (САК) или инсульта в венечнопредсердной системе, встречающихся у лиц молодого и среднего возраста [1, 2]. ДАВБАБ могут быть причиной образования аневризматических расширений артерий, т.н. расслаивающих аневrizм сосудов венечнопредсердной артериальной системы (РАВБАС). В настоящее время эндоваскулярное вмешательство является основным методом лечения аневризм Берри внутричерепных сосудов. Применительно к РАВБАС эндоваскулярное лечение улучшает клинические исходы заболевания [3–5]. Широко обсуждаются частота развития рецидивов и факторы риска развития рецидива после эндоваскулярного лечения аневризм Берри [6]. Цель данного исследования заключалась в ретроспективной оценке частоты и факторов риска развития рецидива после эндоваскулярного лечения РАВБАС. Несмотря на известно, эти показатели до настоящего времени не были изучены.

© American Heart Association, Inc., 2011

Адрес для корреспонденции: Byung Moon Kim, MD, PhD, Yonsei University College of Medicine, Severance Hospital, 250 Seogangno, 120-752, Seoul, Republic of Korea.
E-mail: bmoon21@hanmail.net

ПАЦИЕНТЫ И МЕТОДЫ

Экспертные советы всех участвующих в исследовании клиник одобрили проведение этого ретроспективного исследования и решили отказаться от получения от пациентов информированного согласия. Из нейроинтервенционных баз данных четырех специализированных клиник выбрали данные всех пациентов, которым проводили эндоваскулярное лечение РАВБАС в период с января 2001 по декабрь 2008 г. Все пациенты соответствовали следующим критериям включения: (1) наличие острых клинических признаков или признаков, соответствующих РАВБАС; (2) ангиографические доказательства наличия РАВБАС, т.е. аневризматического расширения внутримозговых артерий в венечнопредсердной системе и без “симптома четок” при проведении цифровой субтракционной ангиографии; (3) проведение эндоваскулярного лечения РАВБАС. Клиническими симптомами и признаками, соответствующими наличию РАВБАС, считали САК, симптомы ишемии головного мозга в области венечнопредсердной системы, внезапную интенсивную головную боль в затылке или сочетание этих признаков. Критериями исключения из исследования были: (1) достоверно подтвержденная травматичес-
кая ДАВБАБ из-за тяжелой травмы; (2) ятрогенные ДАВБАБ; (3) ДАВБАБ без аневризматического расширения артерий; (4) лабораторные или ангиографические признаки васкулита или фиброзно-мышечной дисплазии; (5) отсутствие эндоваскулярного лечения. За этот период 111 пациентам (мужчины/женщины 70/41; средний возраст 45±10 лет, диапазон от 24 до 78 лет) провели эндоваскулярное лечение по поводу 119 РАВБАС. У восьми пациентов отмечались двусторонние РАВБАС. У семидесяти трех (61,3%) пациентов с РАВБАС развилось САК, у 46 пациентов САК не было. Результаты ангиографии проанализировали, учитывая локализацию и протяженность аневризмы (позвоночная артерия [ПА], основная артерия или обе артерии), достаточность коллатерального кровотока и локализацию расслаивающей аневризмы в месте отхождения задней нижней мозжечковой артерии (ЗНМА). Ретроспективно оценивали метод лечения, частоту развития рецидивов после лечения и факторы риска развития рецидива.

Эндоваскулярное лечение и проведение ангиографии в период последующих наблюдений

В каждом случае РАВБАС проводили деструктивное или реконструктивное эндоваскулярное лечение. При деструктивном методе лечения выполняли вмешательство на самом сосуде с расслаивающей аневризмой; окклюзию проксимальных отделов (ОПО) артерии проводили с помощью баллонов или спиралей в сегменте проксимальнее расслаивающей аневризмы, а внутренний спиральный треппинг (ВСТ) заключался в спиральной эмболизации расслоившегося сегмента артерии. При назначении деструктивного лечения в случаях гипоплазии контралатеральной ПА и задней соединительной артерии и стабильного клинического состояния пациента проксимальнее пораженного сегмента на инсилатеральной ПА проводили тест баллонной окклюзии. Когда ВСТ использовали для лечения РАВБАС, локализованных в месте отхождения ЗНМА, расслоившийся сегмент, включая разорвавшийся сегмент, имевший дочерний мешок или значительное расширение, эмболизировали, но сообщение с ЗНМА сохраняли (рис. 1).

Тест баллонной окклюзии ЗНМА не проводили, поскольку процедуру баллонной окклюзии на ЗНМА, включая расслоившуюся аневризму, считали слишком сложной и рискованной. При проведении реконструктивных вмешательств сосуд сохраняли и устанавливали от 1 до 3 стентов с перекрытием по крайм в сочетании с койлингом или без него. При реконструктивном лечении РАВБАС в месте отхождения ЗНМА с использованием стентов и койлинга небольшую часть расслаивающей аневризмы в зоне отхождения ЗНМА оставляли без спиральной эмболизации. Таким образом, при поражении места отхождения ЗНМА расслаивающую аневризму оставляли частично открытой (ВСТ или стентирование с койлингом) или полностью открытой (ОПО или стентирование), чтобы сохранить приток крови к ЗНМА. Тип лечения выбирали в каждом конкретном случае индивидуально на усмотрение нейрорадиолога, в соответствии с симптомами при поступлении, состоянием гемодинамики, в т.ч. достаточностью коллатерального кровотока, а также анатомическими особенностями вертебрально-базилярного артериального ствола. На раннем этапе исследования для реконструктивного лечения использовали баллонно-расширяемые коронарные стенты. Затем стали использовать саморасширяющиеся нейрососудистые стенты (Neuroform, Boston Scientific или Enterprise, Codman). Всем пациентам внутривенно болюсно вводили гепарин в дозе от 3000 до 5000 ЕД сразу после введения катетера, а затем 1000 ЕД каждый час во время проведения вмешательства. Введение гепарина прекращали сразу после завершения процедуры. Пациентам с разорвавшимися РАВБАС, которым провели реконструктивное лечение, назначали двойную дозу антиагрегантов (100–325 мг аспирина и 300 мг клопидогрела) сразу же после завершения процедуры. Пациентам с неразорвавшимися РАВБАС перед проведением реконструктивного лечения назначали двойную дозу антиагрегантов (100–325 мг аспирина и 75 мг клопидогрела) в течение от 3 до 5 дней до начала вмешательства. В течение 12–24 недель пациенты получали антиагреганты в двойной дозе и затем переходили на монотерапию аспирином на неопределенный срок.

При разорвавшихся РАВБАС, лечение которых проводили реконструктивным методом, ангиографию в период наблюдений выполняли через 1–4 недели, 3–6 месяцев, а затем через 12–24 месяца после лече-
ния. При неразорвавшихся РАВБАС, лечение которых проводили реконструктивным методом, было запланировано выполнение ангиографии в период наблюдений через 3–6 месяцев, а затем через 12–24 месяца. После деструктивного лечения ангиографию в период наблюдений выполняли по усмотрению лечащего врача в каждом конкретном случае на индивидуальной основе, с учетом проявлений (разорвавшаяся аневризма), анатомических факторов (поражение ЗНМА или основной артерии), а также типа лечения (ОПО или ВСТ).

Рецидивы после лечения

Наличие рецидива после лечения диагностировали в случае развития повторного кровоизлияния или по результатам проведенной ангиографии. Ангиографическим критерием рецидива после деструктивного лечения считали наличие расширенной расслаивающей аневризмы с или без реканализации артерии. Ангиографическим критерием рецидива после реконструктивного лечения считали существенное увеличение заполнения контрастным веществом части расслаивающей аневризмы по сравнению с контрольной ангиограммой, выполненной сразу после вмешательства.

Статистический анализ

Статистический анализ выполнили с помощью программного обеспечения SPSS для Windows (версия 15.0; SPSS, Чикаго, Иллинойс). Непараметрический критерий или критерий хи-квадрат Манна–Уитни использовали для сравнения непрерывных переменных по мере необходимости. Точечный критерий Фишера или критерий хи-квадрат использовали для сравнения категориальных переменных по необходимости. Проанализировали следующие переменные: возраст, пол, клинические симптомы (разорвавшаяся аневризма по сравнению с неразорвавшейся аневризмой), сахарный диабет, артериальная гипертензия, курение, двустороннее поражение ПА, имеющееся развитие повторного кровоизлияния, а также диаметр аневризмы в месте отхождения ЗНМА и при наличии подозрений на развитие повторного кровоизлияния в случае возникновения симптомов заболевания. Таким образом, в большинстве случаев ангиографию в период наблюдений не проводили у пациентов с РАВБАС, в лечении которых использовали ВСТ, ангиографию в период последующих наблюдений проводили в случае локализации аневризмы в месте отхождения ЗНМА и при наличии подозрений на рецидив, по результатам проведенного магнитно-резонансного исследования, КТ-ангиографии или при возникновении симптомов заболевания.

В период последующих наблюдений ангиографию выполнили в 97 (81,5%) случаях РАВБАС и в 89 (80,2%) — после лечения в период от 3 дней до 48 месяцев (в среднем 13 месяцев). Ангиографию выполняли 59 (95,2%) из 62 больных РАВБАС, лечение которых проводили реконструктивным методом (от 1 до 3 стентов с перекрывающимися краями, n=34; до 48 месяцев (в среднем 13 месяцев). Ангиографию выполнили 59 (95,2%) из 62 больных РАВБАС, лечение которых проводили реконструктивным методом (от 1 до 3 стентов с перекрывающимися краями, n=34; один стент с койлингом, n=15; 2 или 3 стента с перекрывающимися краями с койлингом, n=14), и 38 (62,7%) из 57 больных РАВБАС, лечение которых проводили деструктивным методом (ОПО, n=23). Двойной стент выполняли реконструктивным методом.
ледствии он скончался. У 4 пациентов с повторными кровоизлияниями после деструктивного лечения РАВБАС локализовались в месте отхождения ЗНМА. Двоим из них провели ВСТ, двум другим — ОПО. Из 2 пациентов с повторным кровоизлиянием после ВСТ у одного кровоизлияние произошло через 3 дня после лечения, которое было связано с реканализацией артерии, увеличением расслаивающей аневризмы, что было подтверждено результатами ангиографии в период последующих наблюдений. Этому пациенту провели повторное лечение с последующим койлингом ПА, и он был единственным выжившим после развития повторного кровоизлияния, но с неблагоприятным исходом (оценка по модифицированной шкале Рэнкина 4 балла). У другого пациента кровоизлияние развилось через 8 часов после лечения, и ему повторную ангиографию не выполняли. Из 2 пациентов с РАВБАС, у которых развились повторное кровоизлияние после ОПО, у одного пациента рецидив кровоизлияния произошел через 15 дней после лечения и было выявлено увеличение расслаивающей аневризмы из-за ретроградного кровотока из контралатеральной ПА в ЗНМА (рис. 2). Пациенту повторное эндоваскулярное вмешательство не проводили из-за тяжелого состояния. У другого пациента повторное кровоизлияние развилось через 4 дня после лечения, и ему не проводили повторной ангиографии. В 7 случаях РАВБАС без развития повторных кровоизлияний наличие рецидива подтвердили с помощью ангиографического метода исследования, в 3 из этих случаев первоначальным проявлением аневризмы был ее разрыв, остальные 4 случая были неразорвавшимися аневризмами. В целом, когда развитие повторных кровоизлияний в 3 случаях РАВБАС без результатов повторной ангиографии расценили как рецидив, получилось, что рецидивы развивались в 13 (13%) из 100 случаев РАВБАС. Между группами реконструктивного и деструктивного лечения или между разорвавшимися и неразорвавшимися РАВБАС различий в частоте развития рецидивов не было. По результатам однофакторного анализа, факторами риска развития рецидива после лечения были двустороннее поражение ПА и локализация аневризмы в месте отхождения ЗНМА. Единственным независимым фактором риска развития рецидива, по результатам анализа логистической регрессии, осталась локализация расслаивающей аневризмы в месте отхождения ЗНМА (см. таблицу).

ОБСУЖДЕНИЕ

Внутричерепные РАВБАС, являющиеся причиной САК или геморрагического инсульта, особенно у лиц молодого и среднего возраста, диагностируются все чаще [1, 2]. Поскольку проведение оперативного вмешательства сопряжено с высоким риском последующей заболеваемости и летального исхода [7], в лечении РАВБАС предпочтение отдается эндоваскулярным методам лечения. До сих пор были представлены небольшие исследования эндоваскулярных методов лечения РАВБАС [3–5, 8–10]. Во многих случаях зарегистрировали развитие рецидива РАВБАС с или без САК после эндоваскулярного лечения [5, 9, 10–17]. При расслаивающих аневризмах рецидив после лечения может быть более опасным, чем при аневризмах Берри. Однако расслаивающие аневризмы встречаются гораздо реже, чем аневризмы Берри, в связи со значительным риском развития рецидивов. Анализ результатов лечения РАВБАС позволяет оценить в крупном исследовании серию случаев. Исследование проведено в данной серии случаев впервые в мире. Индивидуально, в данной серии случаев впервые оценены частоту развития рецидивов и факторы риска развития рецидивов после эндоваскулярного лечения РАВБАС. В целом частота развития рецидивов после лечения в настоящем исследовании составила 13%. Средняя частота развития рецидивов после эндоваскулярного лечения РАВБАС неизвестна. Причиной развития рецидивов после эндоваскулярного лечения РАВБАС может быть неразрывное состояние аневризмы, то есть аневризма может быть не разрывшейся. Рисунок 2. Ангиограммы 45-летнего мужчины, поступившего с субарахноидальным кровоизлиянием. На ангиограммах левой позвоночной артерии во фронтальной (А) и боковой (Б) плоскостях, выполненных после окклюзии проксиимальных отделов правой позвоночной артерии съемными спиралями (звездочка), выявлено ретроградное заполнение контрастным веществом небольшой расслаивающей аневризмы в месте отхождения ЗНМА (стрелка). Звездочками отмечены спирали, использованные при окклюзии проксиимальных отделов ПА.
маловероятным. Таким образом, истинная частота развития рецидива после лечения, вероятно, будет менее 13%. Если ни у одного из пациентов без проведения ангиографического исследования в период наблюдений после лечения не развился рецидив, то она составила бы 10,9% (13 из 119). Таким образом, истинная частота развития рецидива после лечения в настоящем исследовании может колебаться между 10,9% и 13%.

Отметим, в частности, что локализация аневризмы в месте отхождения ЗНМА была единственным независимым фактором риска развития рецидива после эндоваскулярного лечения РАВБАС (см. таблицу). При локализации РАВБАС в месте отхождения ЗНМА ни деструктивные, ни реконструктивные методы лечения не позволяли полностью облитерировать расслоившийся сегмент, поскольку приток крови к ЗНМА необходимо сохранить. Отсутствие полной облитерации РАВБАС всегда приводит к сохранению непрерывного антеградного или ретроградного кровотока через остаток мешка расслаивающей аневризмы к ЗНМА. В ПА или в ЗНМА дистальнее сужения ПА в первом шейном позвонке не происходит значительного снижения артериального давления [18], следовательно, постоянный кровоток через незащищенный остаток расслаивающей аневризмы к ЗНМА, возможно, приводит к развитию рецидива.

При аневризмах Берри в случае, когда в мешок аневризмы вовлекается ветвь артерии, подобное состояние гемодинамики может иметь место после проведения эндоваскулярного койлинга, при котором вовлечённая ветвь артерии сохраняется. Тем не менее частота развития рецидивов после койлинга не была значительно выше при аневризмах с вовлечением ветви артерии, чем при аневризмах без вовлечения ветви артерии [19]. Это можно объяснить бóльшей хрупкостью стенки расслаивающей аневризмы, чем стенки аневризмы Берри. Непрерывный кровоток через остаток мешка аневризмы к вовлечённой ветви может потенциально привести к повышению риска развития рецидива при расслаивающей аневризме по сравнению с аневризмой Берри. Кроме того, первичное расслоение может затрагивать непосредственно ЗНМА, а также сегмент ПА, перекрывающий место отхождения ЗНМА. У 2 пациентов в этой серии случаев, результаты ангиографии в период последу-

<table>
<thead>
<tr>
<th>Таблица. Факторы риска развития рецидива после эндоваскулярного лечения расслаивающих аневризм внутричерепных сосудов вертебрально-базилярной артериальной системы</th>
</tr>
</thead>
<tbody>
<tr>
<td>Параметры</td>
</tr>
<tr>
<td>Возраст, среднее значение ± СО, годы</td>
</tr>
<tr>
<td>Пол, n (%):</td>
</tr>
<tr>
<td>мужской (n=61)</td>
</tr>
<tr>
<td>женский (n=39)</td>
</tr>
<tr>
<td>Проявление, n (%):</td>
</tr>
<tr>
<td>разрыв (n=58)</td>
</tr>
<tr>
<td>без разрыва (n=42)</td>
</tr>
<tr>
<td>Сахарный диабет, n (%):</td>
</tr>
<tr>
<td>да (n=5)</td>
</tr>
<tr>
<td>нет (n=95)</td>
</tr>
<tr>
<td>Артериальная гипертензия, n (%):</td>
</tr>
<tr>
<td>да (n=14)</td>
</tr>
<tr>
<td>нет (n=86)</td>
</tr>
<tr>
<td>Курение, n (%):</td>
</tr>
<tr>
<td>да (n=33)</td>
</tr>
<tr>
<td>нет (n=67)</td>
</tr>
<tr>
<td>Даустороннее поражение, n (%):</td>
</tr>
<tr>
<td>да (n=18)</td>
</tr>
<tr>
<td>нет (n=82)</td>
</tr>
<tr>
<td>Поражение основной артерии, n (%):</td>
</tr>
<tr>
<td>да (n=10)</td>
</tr>
<tr>
<td>нет (n=90)</td>
</tr>
<tr>
<td>Поражение ЗНМА, n (%):</td>
</tr>
<tr>
<td>да (n=47)</td>
</tr>
<tr>
<td>нет (n=53)</td>
</tr>
<tr>
<td>Лечение, n (%):</td>
</tr>
<tr>
<td>реконструктивное (n=59)</td>
</tr>
<tr>
<td>деструктивное (n=41)</td>
</tr>
</tbody>
</table>

Рисунок 3. Ангиограммы 40-летнего мужчины, поступившего с внезапной острой болью в затылочной области и симптомами ишемии головного мозга. На ангиограммах, выполненных во фронтальной (A) и сагittalной (B) плоскостях, выявлены расслаивающую аневризму в сегменте левой позвоночной артерии, перекрывающей место отхождения задней нижней мозжечковой артерии (черная стрелка). На ангиограмме, проведенной через 12 месяцев (Г), видно восстановление нормального просвета позвоночной артерии с исчезновением расслаивающей аневризмы (черная стрелка), но с формированием новой аневризмы (звездочка) в проксимальном отделе ствола задней нижней мозжечковой артерии.
ЛИТЕРАТУРА

kommentariй

Нетравматические субарахноидальные кровоизлияния (САК) являются одной из форм острых нарушений мозгового кровообращения с высокими показателями летальности и инвалидизации. В современной клинической практике эндоваскулярные методы лечения аневризм артерий вертебрально-базилярной системы занимают все большее место.

В статье B.M. Kim и соавт. приводятся результаты эндоваскулярного лечения 111 пациентов с расслаивающими аневризмами сосудов вертебрально-базилярной артериальной системы с оценкой частоты и факторов риска развития рецидивов. Авторы выполнили стентирование с или без койлинга у 62 больных, у 57 пациентов вмешательство заключалось в выполнении деструктивных методов путем окклюзии проксимальных отделов сосуда или треппинга расслоенного сегмента артерии. Следует отметить, что подавляющему числу больных в период наблюдения выполняли контрольную ангиографию (в 81,5% случаев), что позволило объективизировать результаты лечения. У 13 пациентов был выявлен рецидив: в 6 случаях с повторным кровоизлиянием и в 7 – без развития такового. Фактором риска, достоверно ассоциированным с повторным кровоизлиянием, было наличие аневризмы в месте отхождения задней нижней мозжечковой артерии.

Представленное исследование является одним из наиболее крупных среди работ по эндоваскулярному лечению больных с аневризмами артерий вертебрально-базилярной системы с учетом относительно редкой встречаемости таких аневризм в сравнении с аневризмами переднего отдела веллизевского многоугольника. Впервые были продемонстрированы результаты малоинвазивных методов лечения как с использованием реконструктивных (стентирование с койлингом), так и деструктивных способов лечения (треппинг, окклюзия сосудов). Важно отметить, что частота рецидивов в данных группах не различалась, несмотря на больший риск развития подобных осложнений при проведении стентирования.

Таким образом, проведенное впервые исследование B.M. Kim и соавт. показало отсутствие значимых различий по частоте повторных кровоизлияний у больных с расслаивающими аневризмами сосудов вертебрально-базилярной артериальной системы при использовании принципиально разных подходов к лечению – реконструктивного и деструктивного, а также позволило выявить факторы, связанные с высоким риском осложнений, что, несомненно, должно учитываться в клинической практике.

Н.А. Шамалов, заведующий отделением лечения и диагностики инсульта НИИ инсульта ГОУ ВПО РГМУ Росздрава, кандидат медицинских наук, доцент