Neurosurgical Advances in the Treatment of Moyamoya Disease

Paritosh Pandey, MD; Gary K. Steinberg, MD, PhD

Background and Purpose—Moyamoya disease is characterized by chronic stenoocclusive vasculopathy involving the distal supraclinoid internal carotid arteries and presents with ischemic or hemorrhagic symptoms. We review advances in the understanding and management of moyamoya disease.

Summary of Review—Cerebral revascularization, either direct or indirect, is the cornerstone of treatment for moyamoya disease. Recent advances have been made in understanding the molecular biology and pathophysiology of moyamoya disease, and new genetic mutations and deletions have been identified. Imaging for moyamoya disease is also rapidly improving with new sequences of MRI and better methods of assessing ischemia and cerebrovascular reserve. Positron emission tomography has emerged as an important tool to measure cerebrovascular reserve. Novel surgical techniques assess patency and ischemia during superficial temporal to middle cerebral artery bypass, including indocyanine green videoangiography to evaluate anastomosis patency, and various methods to monitor intraoperative blood flow. Newer methods of indirect revascularization have been described with placement of more tissues supplied by the external carotid artery on the brain surface. Postoperative hyperperfusion to the chronically ischemic brain tissue is a recently identified causative factor of complications. Interestingly, complications from hyperperfusion mimic those caused by ischemia, although they have different treatments, making the role of postoperative blood flow assessment important in distinguishing between the two. Awareness has also increased that even asymptomatic patients can experience significant cognitive decline attributable to chronic ischemia. Whether this reverts after successful revascularization requires investigation.

Conclusions—Surgical revascularization with direct, indirect, and combined methods remains the preferred procedure for patients with moyamoya disease. (Stroke. 2011;42:3304-3310.)

Key Words: moyamoya disease ■ revascularization ■ STA-MCA bypass

Moyamoya disease (MMD) is a chronic, progressive disease characterized by stenosis or occlusion of the bilateral supraclinoid internal carotid arteries along with development of leptomeningeal collaterals at the base of the brain. The classical presentation of MMD is transient ischemic attacks (TIAs), ischemic strokes, and intracranial hemorrhages. Its natural history is often progressive and includes recurrent ischemic episodes with neurological and cognitive deterioration. Unfortunately, the disease is unresponsive to any medical treatment. Surgery aimed at revascularization of the hemispheres either by direct or indirect bypass techniques is the treatment of choice. Over the past years, there has been major progress in understanding MMD, including its molecular biology, genetics, pathophysiology, radiology and blood flow, and surgical management. This article reviews the major neurosurgical advances in the treatment of MMD.

Genetics and Pathophysiology
The pathophysiology of MMD is poorly understood but genetic, acquired, and environmental factors have been implicated. Recent studies have focused on genetic factors in the pathogenesis of MMD. It is most prevalent in Japanese and Asian populations, and there is a 7% to 12% familial occurrence in the Japanese population as well. The disease is also associated with many genetically transmitted disorders, including neurofibromatosis, Down syndrome, sickle cell anemia, Fanconi anemia and other hemoglobinopathies, and collagen vascular diseases including Marfan syndrome, Ehler-Danlos syndrome, Alagille syndrome, and Majewski osteodystrophic primordial dwarfism Type II.

Chromosomal analysis and genomewide sequencing have been performed to identify genes associated with MMD. Both 3p24-26 and 8q23 in genomewide analyses, in addition to both 6q24 and 17q25 in chromosomal level analyses, have
been identified in familial MMD. A recent genomewide association study of 785,720 single nucleotide polymorphisms comparing 72 Japanese patients with MMD with 45 control subjects revealed a strong association of chromosome 17q25-ter with MMD. Mutations in smooth muscle alpha actin (ACTA2) can predispose to developing MMD as well as premature coronary artery disease and thoracic aortic disease. A single haplotype consisting of 7 single nucleotide polymorphisms at the RNF213 locus was tightly associated with MMD. Mutational analysis of RNF213 revealed a founder mutation, p.R4859K, in 95% of MMD families, 73% of nonfamilial MMD cases, and 1.4% of the control subjects. Hence, RNF213 is identified as a susceptibility gene for MMD. Recently Xq28 deletions removing MTCP1/MTCP1NB and BRCC3 have been shown to cause a type of X-linked familial moyamoya syndrome.

A number of growth factors are thought to be associated with MMD. Because of the extensive collateral formation defining MMD, research has focused on vascular and angiogenic factors. Investigations regarding the role of vascular endothelial growth factor have been inconclusive. Other growth factors identified in cerebrospinal fluid, intracranial or temporal arteries associated with MMD are transforming growth factor-β, basic fibroblast growth factor, hepatocyte growth factor, and platelet-derived growth factor. Basic fibroblast growth factor was found to be specific to MMD and not to other forms of ischemia and hence may serve as a potential marker for MMD. Various adhesion molecules such as intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 have been shown to be increased in the cerebrospinal fluid of patients with MMD. Other markers like lupus anticoagulant, progestagenlin E2, and interleukin-1b are also being investigated for their roles in smooth muscle proliferation and the pathogenesis of the disease and further studies are focusing on inflammation or infectious origin. Additional research is identifying novel biomarker candidates using proteomic analysis of cerebrospinal fluid from patients with MMD. A recent report recognized 2 important biomarkers in cerebrospinal fluid of patients with MMD. This was done using the surface-enhanced laser desorption/ionization—time of flight—mass spectroscopy technique, and although the exact target protein could not be identified, 6 proteins of the corresponding molecular weight (oxyntomodulin, urocortin-2, β-defensin 133, antibacterial protein LL-37, liver-expressed antimicrobial peptide-2, and proenkephalin-A) were inferred to be the exact protein. Smith et al reported an abstract at the December 5, 2008, American Association of Neurological Surgeons Scientific meeting the identification of a panel of urinary biomarkers predicting MMD. There was significant elevation in the levels of matrix metalloproteinase-2, matrix metalloproteinase-9, matrix metalloproteinase-9/NGAL, and vascular endothelial growth factor in the urinary samples of patients with MMD as compared with normal subjects with sensitivity of 87.5%, specificity of 100%, and accuracy of 91.3% (www.aans.org/Media/Article.aspx?ArticleId=53823).

Epidemiology and Natural History
MMD occurs worldwide; however, it is most common in the Japanese population, in which the incidence is estimated to be 0.35 to 0.54 per 100,000 population. In contrast, the incidence in the European population was estimated to be one tenth of the incidence in the Japanese population, whereas the incidence in California and Washington states was estimated to be 0.086 per 100,000 population. MMD presents with various cerebrovascular events, including TIAs, ischemic stroke, intracranial hemorrhage, headache, or seizures. In the Japanese literature, the ischemic type predominates in children (<18 years), whereas the hemorrhagic type predominates in adults. However, in our experience, most of the adult patients also present with ischemic symptoms, and only 14.6% adult patients presented with hemorrhage. Hemorrhage was exceedingly uncommon in children.

The natural history of the disease is not well known, and few studies have been conducted on clinically asymptomatic patients. Kuroda et al conducted a nationwide survey of asymptomatic moyamoya patients, defined as patients who did not have ischemic or hemorrhagic symptoms. Of the 40 patients who participated, 34 were not operated and 7 patients developed TIA (3), ischemic stroke (1), or hemorrhage (3) during a follow-up period (mean, 43.7 months). The annual risk for any stroke was 3.2% per year. None of the 6 patients who were surgically treated had any ischemic or hemorrhagic symptoms during their follow-up period. Yamada et al reported that in the 28 patients with asymptomatic MMD who were conservatively treated, 2 patients died of hemorrhage, whereas 4 patients had TIs. These findings suggest that asymptomatic MMD is not a silent disorder and may progress to cause ischemic or hemorrhagic stroke. However, there is no consensus on offering surgery to all patients with asymptomatic MMD. This is because majority of the poor outcomes in asymptomatic moyamoya patients were secondary to hemorrhage, and there is still no definite evidence that surgical revascularization reduces the risk of intracranial hemorrhage, although a randomized clinical trial is ongoing in Japan to assess the role of revascularization in reduction of subsequent hemorrhage. However, surgical revascularization may be offered to patients with asymptomatic MMD if there is deranged cerebral hemodynamics and the surgical morbidity is low. However, in symptomatic patients, there is a high incidence of stroke in medically treated patients. Hallemeier et al reported a series of 34 patients with MMD, 22 bilateral and 12 unilateral. In medically treated hemispheres, the 5-year risk of recurrent ipsilateral stroke was 65% after the initial symptom, whereas in surgically treated hemispheres, the 5-year risk of perioperative and subsequent ipsilateral stroke was 17% (P = 0.02).

Imaging
For >6 decades, cerebral angiography has been the gold standard in the diagnosis and management of MMD. MRI and MR angiography have also been used for diagnosis of MMD and its sequelae and for follow-up after revascularization. Present research in imaging for MMD focuses on evaluation of cerebrovascular reactivity, predictors of ischemic and hemorrhagic episodes, and predictors of postoperative ischemia and complications.

Single-photon emission computed tomography (SPECT) has long been used to measure cerebral blood flow (CBF) and...
cerebrovascular reactivity, and positron emission tomography (PET) is being increasingly used. PET studies for hemodynamic assessment are usually performed with the following tracers: 15O PET for cerebral blood volume measurement, 15N for CBF, and 15O$_2$ to measure oxygen extraction fraction and cerebral metabolic rate of oxygen. Nariai et al22 observed that the oxygen extraction fraction in the frontal, temporal, and parietal cortices was higher in patients with MMD compared with healthy patients. However, regional cerebral metabolic rate of oxygen tends to be decreased in most cerebral regions because of reduced regional CBF. These patients also have high cerebral blood volume owing to maximal compensatory vasodilatation. A paradoxical steal phenomenon is observed when the vascular bed is maximally dilated and autoregulation is impaired. Nariai et al22 also showed that the oxygen extraction fraction was high in patients presenting with TIA and ischemic symptoms; however, it was normal in patients presenting with fixed deficits or with hemorrhage. PET is now 1 of the most reliable assessment tools for MMD. In a study of 23 patients with MMD, Kuwabara et al noted that there was marked increase in CBF and TT measured by PET, especially in the striatum.14 The cerebrovascular response to hypercapnia was markedly impaired. All the parameters including CBF, TT, and cerebrovascular response to hypercapnia improved after surgery. Whether PET is more reliable than other methods of measurement of cerebrovascular reactivity remains to be seen. A prospective observational study is underway to test the hypothesis that increased oxygen extraction fraction in the cerebral hemispheres beyond the occlusive lesion is a predictor of subsequent risk for ipsilateral stroke in medically treated patients with MMD.23

Novel MRI techniques have been used for quantitative hemodynamic analyses, including dynamic susceptibility contrast-weighted bolus-tracking MRI, arterial spin labeling MRI, and blood oxygen level-dependent MRI. Arterial spin labeling MRI has been compared with SPECT imaging in MMD, and a strong correlation has been found between arterial spin labeling value and ACZ-IMP value with SPECT, suggesting that perfusion imaging with arterial spin labeling MRI could show potentially dangerous zones for ischemia.24 Cerebrovascular reactivity as measured by blood oxygen level-dependent MRI has also been shown to have a direct correlation with impaired vascular supply as measured by modified Suzuki score on angiography.25 Quantitative MR angiography with NOVA software can show actual blood flow across large intracranial vessels and also flow across the superficial temporal artery after revascularization.26 In our practice, xenon CT (without and with acetazolamide) has provided an excellent quantitative method of assessing CBF and hemodynamic reserve with good spatial resolution; however, it is not currently approved by the Food and Drug Administration and can only be used on an Institutional Review Board-approved protocol. The data regarding xenon CT is currently under analysis.

Surgery

Although there has not been any randomized controlled trial comparing surgical and medical treatment in patients with MMD, surgical revascularization has been accepted as the only effective form of treatment. Multiple case series, both retrospective and prospective, have shown the effectiveness of revascularization procedures in preventing future ischemic episodes in patients with MMD. Direct revascularization (superficial temporal to middle cerebral artery bypass [STA-MCA], high-flow bypasses), indirect bypasses (encephalo-duro-arterio-myo-synangiosis, encephalo-duro-arterio-synangiosis, pial synangiosis), and combined procedures (combination of direct and indirect procedures) have been used for many years. However, significant advances have been made in recent years in the techniques and intraoperative monitoring of blood flow during surgery.

STA-MCA bypass has been used for MMD since 1973, when it was used by Kikuchi and Karasawa. Since then, it has been the mainstay of direct revascularization with many authors showing excellent results. We published our results for 450 revascularization procedures, which included direct revascularization in 95.1% adults and 76.2% pediatric patients, in which the surgical morbidity rate was 3.5% and mortality was 0.7% per treated hemisphere.18 The cumulative 5-year risk of perioperative or subsequent stroke or death was 5.5%. Of the 171 patients presenting with a TIA, 91.8% were free of TIA at ≤ 1 year. There was a significant improvement in quality of life in the cohort as measured by modified Rankin Scale. Other authors have also reported excellent results with direct revascularization.27

The technique of STA-MCA bypass is fairly standard and has been described before.28,29 However, a new technique, excimer laser-associated nonocclusive anastomosis, has been developed.30 In this technique, there is no need for temporary vascular occlusion during the anastomosis. The conduit vessel is sewn to the recipient vessel along with the excimer laser-associated nonocclusive anastomosis platinum ring and then the laser catheter is used to make the arteriotomy. After the anastomosis is performed between the excimer laser-associated nonocclusive anastomosis platinum ring and the conduit, the ring/graf complex is sewn to the recipient vessel, and then the laser catheter, composed of a central suction portion and outer circular fiberoptic array, is passed through a side slit in the donor vessel and the arteriotomy is created. The advantage of this technique is that there is no need for temporary vascular occlusion. Unfortunately, at the present time, this technique can only be used for vessels ≥ 2.5 mm, so the bypass is applicable to the suprACLADINID internal carotid artery or proximal middle cerebral artery vessels and not for STA-MCA anastomoses. However, progress is underway to improve the technology and extend excimer laser-associated nonocclusive anastomosis to smaller intracranial arteries. Newer advances have been made in intraoperative monitoring during direct bypass for MMD. Previously, intraoperative Doppler and visual assessment were used to verify the patency of the anastomosis. Two important developments have allowed evaluation of graft patency and flow during surgery. Indocyanine green (ICG) emits near-infrared fluorescence when excited by near-infrared light. After completion of the anastomosis, ICG is injected, excited by near-infrared light, and visualized. Woitzik et al31 examined the role of ICG videoangiography after extracranial–intracranial bypass in 40 patients, of whom 18 had MMD. After the
hemodynamics after revascularization and detected symp-

tomatic hyperperfusion in a patient reported by Nakagawa et al.35 Hoshino et al developed a visible light spectroscopy system for detecting cerebral blood oxygenation during STA-MCA bypass.36 This system permits continuous monitoring of cerebral blood oxygenation during surgery. In 17 patients with chronic ischemia, temporary occlusion of the cortical artery did not affect the cerebral blood oxygenation. In 5 patients, superficial temporal artery blood flow increased the oxyhemoglobin and cortical oxygen saturation and decreased the deoxyhemoglobin saturation, indicating increased cortical blood flow.

Many authors have used virtual surgical planning systems to perform reliable and minimally invasive STA-MCA bypasses. Nakagawa et al used 3-dimensional digital subtraction angiography to identify the location of the appropriate donor branch of the superficial temporal artery and recipient vessel of the middle cerebral artery and to plan the microcraitotomy.37 They used this technique in 28 consecutive patients, of whom 6 had MMD. In every patient, surgery was performed with preoperative surgical planning and a small craniotomy. A similar approach has been tried and performed with both CT angiography and MR angiography.38 Whether this translates into better clinical outcome remains to be seen.

Various indirect methods of revascularization have been described in the literature.39,40 The principle behind indirect procedures is the placement of vascularized tissue supplied by the branches of external carotid artery on the brain to stimulate angiogenesis and collateral vessels in the brain. Although indirect revascularization procedures have been found to be very beneficial and safe in children,40 their efficacy in adult moyamoya patients has been more controversial. However, some recent reports suggest they have low perioperative risks and significantly decreased subsequent ischemic events.41,42 Multiple procedures have been described, including encephaloduroarteriosynangiosis, encephalo-duro-arterio-myosynangiosis, emergency management of stroke, omental transplantation, and pial synangiosis. Newer procedures have been developed that use different combinations of tissues placed over the brain to provide additional revascularization. Ishii et al43 described a STA-MCA bypass with encephalo-duro-myo-synangiosis to augment revascularization in 6 adult patients with effective neovascularization through the grafts in all patients. Kuroda et al described their 11-year experience with a novel bypass procedure, STA-MCA anastomosis with encephalo-duro-myo-arterio-pericranio-synangiosis.44 They performed this surgery in 123 hemispheres in 75 patients. In addition to the STA-MCA bypass and indirect bypass for the middle cerebral artery territory, the medial frontal lobe was revascularized using the frontal pericranial flap through a medial frontal craniotomy. The overall incidence of mortality and morbidity was 0% and 5.7%, respectively, whereas the annual risk of cerebrovascular events was 0% in pediatric patients and 0.4% in adults. SPECT/PET studies revealed that CBF and its reactivity with acetazolamide markedly improved in both the middle cerebral artery and anterior cerebral artery territories. It is still not clear if the combined procedures improve outcome compared with direct or indirect bypasses alone.
There is increased understanding of the predictors for perioperative complications after revascularization surgery. Hyun et al analyzed the incidence and causes of perioperative ischemic complications in 165 patients with adult-onset MMD45 who underwent 246 revascularization procedures, mostly encephaloduroarteriosynangiosis. There were 19 (7.7\%) perioperative ischemic complications, 4 with permanent neurological deficit and 15 with reversible deficits. Interestingly, 17 of the 19 complications occurred in the initially affected hemisphere regardless of the side of the surgery. Multiple ischemic episodes, presence of hypodensity on CT scan, and high signal intensity on diffusion-weighted MRI were significantly associated with perioperative ischemia complications. In our study, high postanastomotic middle cerebral artery flow significantly correlated with hemorrhage, transient neurological deficits, and perioperative ischemia.33

An important consideration in the postoperative management of patients with MMD is the concept of hyperperfusion causing transient or permanent neurological deficits. This complication is well known in carotid endarterectomy and high-flow bypasses; however, it has been increasingly described in low-flow STA-MCA bypasses. Pathologically, it occurs due to a rapid increase in blood flow in chronically ischemic regions of the brain. In 1 study, the incidence of symptomatic hyperperfusion was estimated to be as high as 38.2\% in patients with adult-onset MMD.46 In this syndrome, hemorrhage or infarct/diffusion lesions are not present in the MRI scan; however, patients have gross neurological deficits in form of aphasia, dysarthria, orofacial apraxia, or sensorimotor loss. It is important to recognize this syndrome because the treatment for it is the opposite of that of ischemia. A patient with postoperative ischemia despite a patent graft and lowering of blood pressure. The diagnosis is usually made with SPECT scan following the STA-MCA bypass or sometimes with other perfusion studies such as CT perfusion and MR perfusion. Fukimura et al analyzed the incidence of symptomatic hyperperfusion in patients with MMD and performed SPECT 1 and 7 days after the bypass.47 Of 58 patients (80 hemispheres), 21 (22 sides [27.5\%]) had symptomatic hyperperfusion and were subjected to intensive blood pressure control. Postoperative MRI showed patent bypass in every patient without infarct; however, SPECT showed increased perfusion in every patient. There were 17 patients with transient neurological deficits because of localized hyperperfusion mimicking ischemia, whereas 4 patients had severe headache with subarachnoid hemorrhage3 or intracerebral hemorrhage.1 The authors reported that tight control of blood pressure and use of a free radical scavenger relieved the symptoms in all patients. Adult-onset disease ($P=0.013$) and hemorrhagic-onset patients ($P=0.027$) had a significantly higher risk of hyperperfusion. Hayashi et al48 described their experience with postoperative worsening and the role of hyperperfusion in 22 pediatric patients. Frequent TIAs preoperatively were significantly associated with postoperative hyperperfusion and watershed shift. Hyperperfusion has also been correlated with delayed intracerebral hemorrhage. Kohama et al49 described the temporal changes of 3-T MRI/MR angiography during symptomatic hyperperfusion after STA-MCA bypass. The time-sequential 3-T MR angiography showed an intense high signal of the donor superficial temporal artery and dilated branches of the middle cerebral artery around the anastomosis during hyperperfusion. Thus, the recognition, diagnosis, and management of this important complication after STA-MCA bypass for MMD is important for achieving good patient outcomes. Although there is no definite proof regarding hyperperfusion causing neurological deficits, there is some Level 3 data supporting this hypothesis. It is important to note that these studies did not have a control arm, and hence additional studies are required to establish the role of hyperperfusion in MMD. Interestingly, some of the patients in our Stanford series who developed postoperative neurological deficits (transient or permanent) actually showed decreased perfusion on MR or xenon CT in some areas (ipsilateral or contralateral to the direct bypass), raising the possibility of competing flows between native collaterals and the bypass.

Angioplasty and/or stenting have been proposed as an alternative treatment for MMD. However, reported failure of these endovascular techniques50 suggests surgical revascularization is the preferred procedure. In rare cases when initial surgical revascularization is ineffective, repeat revascularization may achieve excellent outcomes.51

Most of the outcome assessments after revascularization procedures have focused on cerebrovascular events, especially TIAs or strokes. However, there is increasing awareness about cognitive impairment related to MMD in both adult and pediatric patients.52,53 We analyzed the effect of MMD on neuropsychological functioning in 36 patients with MMD who were given presurgical neuropsychological assessments. Mean group performance was within normal limits for all measures assessed; however, executive functioning was highly impaired. Of the 36 patients, cognitive impairment was present in 11 (31\%) and was moderate to severe in 4 (11\%).54 Calviere et al55 analyzed the relationship between cognitive impairment and cerebral hemodynamic disturbances on perfusion MRI in 10 adults with MMD. Dysexecutive cognitive syndrome was found in 6 of the 10 patients and was related to impairment of blood flow in the frontal region as seen on perfusion imaging. Intellectual decline has also been seen in pediatric patients. Few studies have compared the neuropsychological outcomes before and after revascularization.52 Jefferson et al reported a case of adult-onset MMD in which the patient had normalization of dysexecutive functions after revascularization surgery.56 Larger studies will be required to determine if an STA-MCA or indirect bypass is able to improve the global CBF and the cognitive impairment due to chronic cerebrovascular ischemia.

Conclusions

Recent advances have been made in elucidating the genetics and pathophysiology, applying novel imaging modalities, innovative CBF measurements, surgical techniques, and outcome assessments of MMD. Further advances understanding the molecular pathways underlying development of the disease will likely lead to novel therapies. For now, surgical revascularization with direct, indirect, and combined methods remains the procedure of choice in patients with MMD.
ACKNOWLEDGMENTS

We thank Cindy H. Samos for assistance with the manuscript.

SOURCES OF FUNDING

This work was supported in part with funding from the Huber Family Moyamoya Fund, the William Randolph Hearst Foundation, and Bernard and Ronni Lacroute.

DISCLOSURES

None.

REFERENCES

Neurosurgical Advances in the Treatment of Moyamoya Disease
Paritosh Pandey and Gary K. Steinberg

Stroke. published online October 6, 2011;
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/early/2011/10/06/STROKEAHA.110.598565

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2012/08/08/STROKEAHA.110.598565.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office.
Once the online version of the published article for which permission is being requested is located, click
Request Permissions in the middle column of the Web page under Services. Further information about this
process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/
모야모야병의 신경외과적 치료의 발전

Neurosurgical Advances in the Treatment of Moyamoya Disease

Paritosh Pandey, MD; Gary K. Steinberg, MD, PhD

(Stroke. 2011;42:3304-3310.)

Key Words: moyamoya disease ■ revascularization ■ STA-MCA bypass

모야모야병(moyamoya disease)은 양측의 상상동맥(supraclinoid internal carotid artery)의 혈착이나 폐색이, 뇌기저부의 연수막(leptomeningeal) 결손의 발달과 함께 나타나는 것이 특징인 만성, 진행성 질환이다. MMD의 전염적인 암상 양상은 TIA, 혈뇌증증(ischemic stroke), 두개내출혈(intracranial hemorrhage)이다. 때때로 진행성 경과를 취하며, 신경학적 증상 및 인지기능의 악화와 함께 반복적인 헤혈 증상을 나타내는 경과를 취하기도 한다. 브레아이드 어 젊은 그 어떤 내과적 치료에도 반응하지 않는데, 뇌혈관의 혈관재생(reriversalization)을 목적으로 하는 직접 또는 간접 우회조절술이 최선의 치료이다. 최근 수년간 MMD라는 질병을 이해하는 데 있어서 분자생물학적, 유전학적, 범태생리학적 측면 및 영상 방법과 혈류에 대한 이해, 수술 방법론의 면에서 많은 발전이 이루어졌다. 본 논문에서는 MMD 치료에 있어서의 신경외과적 발전에 대하여 검토하고자 한다.

From the Department of Neurosurgery, Stanford Stroke Center and Stanford Institute for Neuro-Innovation and Translational Neurosciences, Stanford University School of Medicine, Stanford, CA.

Correspondence to Gary K. Steinberg, MD, PhD, R281, Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5327. E-mail gsteinberg@stanford.edu

© 2011 American Heart Association, Inc.
유전 및 병태생리

MMD의 병태생리의 잘 알려져 있지 않으나, 유전적, 후천적, 환경적 요인이 연관되어 있다. 최근 연구에서는 MMD의 발생에서 유전적 측면에 초점을 맞추었다. MMD는 일본인과 아시아인에서 가장 많이 발생하며, 일본 연구에서는 7~12%의 가족 내 발생을 보인다. 또한 MMD는 다른 유전 질환과 연관되어 있기도 하므로, 여기에는 신경섬유증(neurofibromatosis), 다운증후군(Down syndrome), 낮적혈구병(sickle cell anemia), 판노니질환(Fanconi anemia) 및 그 외 혈소드병증(hemoglobinopathy), 마르판증후군(Marfan syndrome), 이허-달로스증후군(Ehler-Danlos syndrome), 알길로스증, 빅제우스도스티오피아 primordial dwarfism Type II 등을 포함하는 교원혈관질 등이 있다.

액색세포와 전장유체 세포의 (genomewide sequenc-ing)에서 MMD와 연관된 유전자를 분석하였다. 3p24-26와 8q23가 전장유체 세포를 통해, 6q24와 17q25가 액색세포 분석을 통해 가족성 MMD에서 확인되었다. 최근 72명의 일본인 MMD 환자와 45명의 대조군의 785,720 단일유전체들 대형(single nucleotide polymorphism)을 비교 분석한 전장유체 관련 연구에서 17q25-ter가 MMD와 강한 연관 관계를 보였다. 평균근 압박액량(smooth muscle alpha actin, ACTA2)의 변이는 MMD의 발생과 조기 관상동맥질환(coronary artery disease)의 발생, 환부과동맥질환(thoracic aortic disease) 발생의 상황을 나타내고 있다. 평균근 압박액량(smooth muscle alpha actin, ACTA2)의 변이는 MMD의 발생과 조기 관상동맥질환(coronary artery disease)의 발생, 환부과동맥질환(thoracic aortic disease) 발생의 상황을 나타내고 있다. 평균근 압박액량(smooth muscle alpha actin, ACTA2)의 변이는 MMD의 발생과 조기 관상동맥질환(coronary artery disease)의 발생, 환부과동맥질환(thoracic aortic disease) 발생의 상황을 나타내고 있다.

연구결과는 MMD의 감수성 유전자(susceptibility gene)로 확인되었고, 최근 연구에 따르면 MMD의 감수성 유전자는 73% 중 14%에 나타났다. 그러나, 최근 연구에 따르면 MMD의 감수성 유전자는 73% 중 14%에 나타났다. 그러나, 최근 연구에 따르면 MMD의 감수성 유전자는 73% 중 14%에 나타났다. 그러나, 최근 연구에 따르면 MMD의 감수성 유전자는 73% 중 14%에 나타났다. 그러나, 최근 연구에 따르면 MMD의 감수성 유전자는 73% 중 14%에 나타났다.

많은 성장 인자가 MMD와 연관이 있을 것으로 생각되고 있다. 평범한 결손은의 존재로 MMD가 정의되기 때문에, 많은 연구들이 메개인자 및 혈관형성인자에 초점을 맞추어 왔다. 혈관형성인자(vascular endothelial growth factor)의 역할에 대한 연구는 아직 결론이 내려지지 않았다. 논의수, 두개 또는 측두동맥에서 동정, MMD와 연관된 다른 성장인 자들은 전장성장성인자(transforming growth factor)-β, 염기성 섬유포세포성장인자(basic fibroblast growth factor), 간포세포성장인자(hapatocyte growth factor), 혈소판 유래성장인자(platelet-derived growth factor)가 있다. 염기성 섬유포세포성장인자는 MMD에 독이적이거나, 혈액의 다른 형태에는 특징적이지 않아서 MMD의 잠재적 표시자로 간주될 수 있을 것 같다. 세포간부착분자(intercellular adhesion molecule) 1, 혈관내피성장인자(vascular cell adhesion molecule) 1과 같은 다양한 부착분자들 도 MMD 환자의 뇌뇌수액 중 증가한 것으로 보고되었다. 루프스항응고인자 (lupus anticoagulant), 프로스타그_landien (prostaglandin) E2, 인터리킨(interleukin)-1b와 같은 다른 표지자들도 또한 평균근의 증식이나 절반의 발생에서 그 역할에 대해 연구되어 왔으며, 연속 반응이나 감염에 대해서도 연구가 진행되어 왔다. 그리고 MMD 환자의 뇌뇌수액의 단백질(proteomic) 분석을 사용한 새로운 생물학적 지표의 후보 물질을 규명하는 연구들도 있다. 최근의 보고에 MMD 환자의 뇌뇌수액에서 증정된 두 가지의 중요한 생물학적 지표가 발표되었다. 방출에 강한, 염화선의 표본에서 regime-2, 비네로프탈-2, proteasomal 133, 항생가성 단백질 LR-37, live-expressed anti-

역학 및 자연 경과

MMD는 세계적으로 발생하나 일본인에서 가장 흔하게, 일본인 인구 10만 명당 0.35~0.54명에 이르는 발생률을 보인다. 반면, 유럽인에서는 일본인 발생률의 1/10에 해당하는 발생률을 보이고, 캐리포나이나 워싱턴주의 발생률은 인구 10만 명당 0.086명이다. MMD는 다양한 혈관질환으로 발생하는데, TIA, 혈관뇌종증, 두개내출혈, 두통, 발작 등이 포함된다. 일본 문제로 따르면 소아(18세 미만)에서는 혈관 유형이 주로 나타나고 성인에서는 출혈 유형이 주로 나타난다고 한다. 그러나 본 연구의 경우는 신장 환자의 대부분이 혈관 정상으로 발현하였으며, 14.6%의 성인 환자가만이 출혈로 인한 증상을 보였다. 출혈은 소아에서의 심한 드물게 나타난다. 이 질병의 자연 경과는 잘 알려져 있지 않으며, 임상적으로 무중상 환자를 대상으로 한 연구는 거의 없다. Kuroda 등이 무중상상 모양모양 환자를 대상으로 국제적 조사를 시행하였는데, 무중상 환자는 출혈성이나 혈관성 증상이 없었던 환자로 정의하였다. 40명의 환자가 참여하였으며, 추적 관찰 기간 동
영상

60년 이상의 기간 동안, 뇌혈관질환은 MMD의 진단 및 치료에 있어서 최고의 방법이었다. MRI는 MR 혈관영상 또는 MMD와 그 후유증의 진단 및 혈관내형이 이후 주요 치료에 사용되어 왔다. MMD의 반도층 검사에 대한 현재의 연구들은 뇌혈관후두성, 혈관내척성 질환 발생에 대한 예측인자, 수술 후 혈관 및 혈관내의 예측 인자와 치료에 대한 영향을 두고 있다.

단일광자방출방사진단촬영(single-photon emission computed tomography, SPECT)은 오랫동안 뇌혈류(cerebral blood flow, CBF, 뇌혈관반응성의 측정에 사용되어 왔으며, 양전자방출방사성감사(positron emission tomography, PET)의 사용이 점차 증가하고 있다. PET는 다음과 같은 추적자(tracer)를 이용하여 혈류력을 측정하는데, C-O PET는 뇌 혈류량의 측정에 사용하고, H215O는 CBF, 18O는 산소주출(oxygen extraction fraction)과 대뇌의 산소 대사량의 측정에 사용한다. Nariai 등은 전두엽, 셀루타그, 두경부 피질의 산소주출률이 MMD 환자에서 감소한다고 보았다. 이러한 결과는 또한 보상 작용으로 인하여 최대한으로 혈관이 확장되어 있어서 높은 혈액량을 보였다. 혈관병이 최대한 확장되어 있고 자동 조절능이 손상되어 있을 때 병리적 도로 현상(steal phenomenon)이 관찰된다. Narita 등은 TIA와 혈청성 증상을 보이는 환자에서 산소주출률이 낮다고 보고하였는데, 영구적인 손상을 보이거나 출혈이 있는 환자에서 정상이었다. PET는 이제 MMD에서 가장 신뢰할만한 평가 도구 중 하나이다. MMD 환자 23명을 대상으로 한 연구에서 Kurobara 등은 PET 검사 시 CBF와 혈류과 시간(transit time, TT)과 현저하게 증가함을 보고하였으며, 이는 특히 신경해(striatum)에서 관찰되었다. 고전신경증(hypercapnia)에 대한 뇌혈관은 현저하게 손상되어 있었다. CBF, TT, 고전신경증에 대한 뇌혈관 반응을 포함한 모든 매개 변수가 수술 후에 호전되었다. PET가 뇌혈관 반응을 측정하는 다른 방법들보다 더 신뢰할 만함을 보여준다.

영상 및 지표는 MMD 환자에서, 혈관폐쇄 또는 유합과의 연관성도, 환자들의 만족도, 치료의 효과성에 대한 연구가 진행되어야 한다. MMD 환자의 수술 후의 치료는 수술 전후와 그 이후의 동반 산소주출 발생 위험률이 5년간 17%였다.(P=0.02).
상 발전을 예방할 수 있음을 보고하였다. 직접적 혈관 재형성
(판단축두동맥-대뇌동맥 우회로조성술(STA-MCA 우회로
조성술), 혈류 우회로조성술(뇌혈관맥공증종화술[encephaloduroarteriosynangiosis], 뇌
혈관맥공증종화술[encephaloduro-arterio-
myo-synangiosis], 연네맥공증종화술(pial synangiosis)), 혈
류와 혈류 조성술의 합작(수술 및 혈류 조성의
적합성) 등이 제기되었다. 그러나 최근 몇 년간, 기술적인
측면과 수술 중 혈
류 모니터 방법에서 의미 있는 발전이 이루어졌다.

STA-MCA 우회로조성술은 Kikuchi와 Karasawa에 의해
시행된 1973년 이후 MMD 환자에서 시행되어 왔다. 그 이후
로 STA-MCA 우회로조성술은 직접 혈관재형성술의 주축이었
으며, 흔히 사용된 결과를 보면, 본 연구가 450례의 혈관재형성
수술을 발표하였는데, 직접 혈관재형성술은 성인의
91.5%, 소아의 76.2%에서 시행하였고, 치료받은 대비방응
수술에 따른 위험성은 3.5%, 사망률은 0.7%였다. 수술 관련
또는 이후 뇌졸중이나 사망의 5년 누적 위험률은 5.5%였다.
TIA가 발생한 환자 171명 중 91.8%는 4년 이상 TIA를 겪었
었으며, mRS로 측정한 살의 정도 유의한 효과를 보였다. 다른
자료들도 직접 혈관재형성술의 탑향한 결과를 보고하였다. 27

STA-MCA 우회로조성술의 기법은 상당히 표준화되어 있으
며, 이전에 기술된 바 있다. 28,29 그러나 excimer laser-asso-
ciated nonocclusive anastomosis의 새로운 기법이 개발되
었다. 이 기법에서는 수술을 동안 일시적으로 혈관 패쇄를 유
도할 필요가 없다. 연결할 혈관을 이식받은 혈관에 브레치로
excimer laser-associated nonocclusive anastomosis
platinum ring과 함께 브레치로 연결한 새로운 기법이 개발
되었다. 30 excimer laser-associated nonocclusive anastomosis
vascular ring과 함께 브레치로 연결한 새로운 기법이 개발
되었다. 이 방법은 동안 일시적인 혈관 패쇄를 유도할
필요가 없다는 장점이 있다. 그러나 현재로서는 적정 한 2.5
mm 이상의 혈관에서만 사용할 수 있어서 상상도기 상해의 내
경동맥이나 근위부 중대뇌동맥에만 적용 가능하고, STA-MCA
대변환술은 적용할 수 없다. 그러나 기술이 계속 발전하고 있
고 excimer laser-associated nonocclusive anastomosis
기법을 조금 더 작은 두개뇌 혈관에 적용할 수 있도록 하는
통로와 직접 우회로조성술 중에 모니터링에서도 새로운 발전
이 이루어지고 있다. 이전에는 수술 중 도플러(Doppler)이나 응
용으로 평가하는 것이 모호 브레치의 개방 정도를 확정하는 방법
이었다. 수술 중 이식된 브레치와 혈류를 평가하는 데 두
가지 중요한 발전이 있었다. 인도시아린그린(indocyanine
green, ICG)은 근위측산화에 의해 자극받는 근위측산화 형광을 난
다. 원래의 화학용으로 ICG를 주입하고 근위측산화로 자극을 주
어 각각의 시간장, Woitzik 등은 18명의 MMD 환자가 포함된
40례에서 두개뇌-두개뇌 우회로조성술을 시행한 후 ICG 비다
오 혈관재형성술의 역할을 시험하였다. ICG 수치 시행 후 ICG
(0.3 mg/kg body weight)을 정맥 경피 주입(bolus injection)
을 통해 투여하여, ICG 혈관조성수는 수술 후 12
시간 경과하였다. ICG 혈관조성수는 수술 후 12
시간 경과하면 ICG 혈관조성수는 제대로 기능하
지 못하는 STA-MCA 우회로 4례를 찾아내었으며, 이는 성공
적으로 대체되어되었다. 모든 환자에서 대뇌동
맥, 우회로 이식된 대뇌 혈류의 시각가 탁월하게 이루어져
하는 것이 확인되었다. ICG 비도 혈관조성수는 제대로 기능하
지 못하는 STA-MCA 우회로 4례를 찾아내었으며, 이는 성공
적으로 대체되어되었다. 모든 환자에서 대뇌동
맥, 우회로 이식된 대뇌 혈류의 시각가 탁월하게 이루어져
하는 것이 확인되었다. ICG 비도 혈관조성수는 제대로 기능하
지 못하는 STA-MCA 우회로 4례를 찾아내었으며, 이는 성공
적으로 대체되어되었다. 모든 환자에서 대뇌동
맥, 우회로 이식된 대뇌 혈류의 시각가 탁월하게 이루어져
하는 것이 확인되었다. ICG 비도 혈관조성수는 제대로 기능하
지 못하는 STA-MCA 우회로 4례를 찾아내었으며, 이는 성공
적으로 대체되어되었다. 모든 환자에서 대뇌동
맥, 우회로 이식된 대뇌 혈류의 시각가 탁월하게 이루어져
하는 것이 확인되었다. ICG 비도 혈관조성수는 제대로 기능하
지 못하는 STA-MCA 우회로 4례를 찾아내었으며, 이는 성공
적으로 대체되어되었다. 모든 환자에서 대뇌동
맥, 우회로 이식된 대뇌 혈류의 시각가 탁월하게 이루어져
하는 것이 확인되었다. ICG 비도 혈관조성수는 제대로 기능하
지 못하는 STA-MCA 우회로 4례를 찾아내었으며, 이는 성공
적으로 대체되어되었다. 모든 환자에서 대뇌동
맥, 우회로 이식된 대뇌 혈류의 시각가 탁월하게 이루어져
하는 것이 확인되었다. ICG 비도 혈관조성수는 제대로 기능하
지 못하는 STA-MCA 우회로 4례를 찾아내었으며, 이는 성공
적으로 대체되어되었다. 모든 환자에서 대뇌동
맥, 우회로 이식된 대뇌 혈류의 시각가 탁월하게 이루어져
하는 것이 확인되었다. ICG 비도 혈관조성수는 제대로 기능하
지 못하는 STA-MCA 우회로 4례를 찾아내었으며, 이는 성공
적으로 대체되어었다.
(thermal diffusion flow probe)를 이용하여 12명의 천막 MMD 환자에서 우회로조절술 전후로 14개소의 대뇌피질 영역의 국소적 CBF를 측정하였다. 일시적으로 혈관을 패쇄시켰을 때, 대뇌피질의 관리인 한 환자에서도 볼이지 않았다. 우회로 시행 직후 국소적 CBF가 증가하였고 6개만 구중 4개소에서 증가한 상태가 유지되었다. 평균적으로 현황술 후 1~2분과 5~10분에 우의하게 증가하였다. 혈관 문합 부위의 개통 정도의 데리표지로 직접적 우회로조절술 중에 사용할 수 있다. Nakagawa 등13)은 전신적 난 보행 혈류 모니터링 방법을 이용하여 혈관관련증후군의 관리적 대뇌피질의 패쇄는 혈류 순상을 예방할 것을 보고하였다. Hoshino 등은 STA-MCA 우회로조절술 중의 혈류 순상의 관리를 감지하기 위한 visible light spectroscopy를 개발하였다. 이 시스템은 수술 중에 혈류 순상의 관리를 연속적으로 모니터링할 수 있다. 먼저 혈관 관리는 4G의 환자에서, 대뇌피질 동맥의 일시적인 패쇄는 혈류 순상에 영향을 미치지 않았다. 5명의 환자에서 양측대뇌마약 혈관련 실험체(Hypoxia)와 대뇌피질 순상,도포도를 모방했고, 밝상순상혈관(deoxymicroglobulin) 조영도를 감소시켰다. 이는 대뇌피질 혈류의 증가를 시사한다.

많은 저자들이 안정적으로, 그리고 치료를 최소화하기 위한 STA-MCA 우회로조절술을 시행하기 위해 가장 수술 계획 시스템(virtual surgical planning system)을 사용해왔다. Nakagawa 등은 양측대뇌마약의 이식시기 적절한 문제가 중대뇌피질의 이식방식이 적절한 혈관을 규명하고, 미세개두술(microsurgery)을 계획하기 위해 3차원 디지털현상관조영술을 사용하였다. 이 방법을 이용하여 6명의 MMD 환자를 포함한 28명의 환자를 시술하였다. 모든 환자에서 수술 전계획 및 미세개두술을 통해 수술이 시행되었다. 비슷한 방법으로 CT 혈관조영술과 MR 혈관조영술을 시도하였는데, 이 방법이 조금 더 낮은 이상 증상을 감소하는 지켜봐야 한다.

문헌상에 다양한 간접적 혈관관련증후군 방법이 기술되어 왔다. 간접적 슬기의 원리는 뇌뇌의 신경관 형성과 결합판을 약화하기 위해, 외부혈관의 관리이에 의해 공급되는 혈관분포조직을 뇌에 이식시키는 것이다. 간접적 혈관관련증후군은 소아에서 매우 효과적이며 안정적인 방법으로 알려져 있으나, 성인에서의 효과는 논란이 조금 더 많다. 그러나 최근 연구에서 수술 전후의 위험이 낮고 수술 후의 혈관관련증 후유증에 유의하게 감소시킨다는 것을 보고하였다. 이 간접적 비용이 기술되어 왔는데, 여기에는 뇌뇌혈관간접관절합술, 뇌뇌혈관간접관절합술, 뇌뇌혈관간접관절합술, 뇌뇌혈관간접관절합술이 포함된다. 추가적인 혈관관련증후군에 의해 뇌뇌에 위치시키는 조정의 여러 다른 조합을 사용하는 새로운 손가락이 개발되어 왔다. Ishii 등13)은 혈관관련증후군을 증가시키기 위해 6명의 청소년 환자에 서 뇌뇌혈관간접관절합술(encephalo-duro-myo-synangiosis)을 이용한 STA-MCA 우회로조절술을 기술하였고, 이식 혈관을 통해 효과적으로 신경혈관 형상이 이어지는 것을 모든 환자에서 확인하였다. Kuroda 등은 뇌뇌혈관간접 혈관간접관절합술(encephalo-duro-myo-arterior-pericranio-synangiosis) 방법으로 STA-MCA 문합술을 시행한 새로운 우회로조절술에 대한 11년간의 경험을 보고하였다. 그들은 환자 75명의 123개 반구에서 이 수술을 시행하였고, 중대뇌혈관 영역에 대한 STA-MCA 우회로와 간접적 우회로에 대하여, 내측 두개두두혈관(medial frontal craniotomy)을 통해 두개두두혈관을 사용하여 내측두두혈관 혈관관련증후군을 시행하였다. 소아 환자에서 뇌뇌혈관관련증후군의 연간 위험률은 0%, 성인은 0.4%였던 반면, 전반적인 사망률과 위험률은 0%와 5.7%이었다. SPECT/PET 검사의 CBF와 acetylcholine에 대한 반응성과 중대뇌혈관 및 두개두혈관 영역에서 추적한 아기 환자 회복되었다. 혈관과 직접적 또는 간접적 방법 각각에 비해 예후를 항상시키지는 아직 확실하지 않다.

혈관관련증후군 이후 수술(polyoperative) 후방증의 예측 인자에 대한 이해가 점차 증가하고 있다. Hyun 등은 성인 MMD 환자 165명에서 246개의 혈관관련증후군의 변별적 뇌뇌혈관간접관절합술을 시행하고 수술 후 혈관관련증후군의 발생률과 위험을 분석하였다. 15(13.4%)의 수술과 혈관관련증후군이 발생하였는데, 4명은 뇌뇌혈관간접관절합술을 시행하지 않았다. 경미한 증상은 15명의 경미한 혈관관련증후군을 보였고, 중증의 증상은 15배의 혈관관련증후군이 발생하였다. 이 증상은 혈관관련증후군의 위험단계와 비슷한 증상을 보인 반구에서 발생하였다. 이 증상의 위험단계는 CT 스캔으로 조정될 증상의 존재, MRI 확인조영상에서 고신호 영역이 보이는 경우 수술과 혈관관련증후군의 위험단계와 유사하고 관찰되었고, 본 연구에서, 문합술 후 중대뇌혈관 영역의 혈관이 높은 경우, 출혈, 일반적인 신경학적 이상, 수술과 혈관관련증후군과 유사하게 관련되어 있었다. 13)

MMD 환자의 수술 후 처치에서 중요하게 고려할 점은 일시적이나 영구적인 신경학적 이상을 유발하는 관절관련증후군이다. 이 관절관련증후군은 carotid endarterectomy이나 고혈압(high-flow) 우회로조절술에서 잘 알려져 있다. 그러나 조절관련증후군에서의 보고도 존재하고 있다. 병리학적 이상으로는, 이 뇌뇌의 반점적 혈관하부로 혈관이 급격히 증가함에 의해 발생한다. 그러나, 증상은 증상과 관관련증후군의 발생관련증후군은 성인 MMD 환자에서 38.2%까지 높게 측정되었다. 이 증상은 수술의 문제나 조절관련증후군의 보고보다 생각되어야 한다. 이 증상은 출혈이나 경색/대뇌혈관관련증후군은 MMD 영역에서 관찰되지 않으나, 환자들은 심리적, 구조적, 임상 및 문하증후군, 감각운동 장애(sensorymotor loss) 등의 같은 형태의 육안으로 확인 가능한 신경학적 손상을 보인다. 이 중추군은 감지하는 것이 중요하므로, 치료가 혈관관련증후군의 치료와 반대가기 때문이다. 이식 혈관을 통한 혈류 공급이
null

