Systematic Review of Perfusion Imaging With Computed Tomography and Magnetic Resonance in Acute Ischemic Stroke: Heterogeneity of Acquisition and Postprocessing Parameters

A Translational Medicine Research Collaboration Multicentre Acute Stroke Imaging Study

Krishna A. Dani, MRCP; Ralph G.R. Thomas, MRCP; Francesca M. Chappell, PhD; Kirsten Shuler, BSc; Keith W. Muir, MD; Joanna M. Wardlaw, MD

Background and Purpose—Heterogeneity of acquisition and postprocessing parameters for magnetic resonance– and computed tomography–based perfusion imaging in acute stroke may limit comparisons between studies, but the current degree of heterogeneity in the literature has not been precisely defined.

Methods—We examined articles published before August 30, 2009 that reported perfusion thresholds, average lesion perfusion values, or correlations of perfusion deficit volumes from acute stroke patients <24 hours postictus. We compared acquisition parameters from published studies with guidance from the Acute Stroke Imaging Research Roadmap. In addition, we assessed the consistency of postprocessing parameters.

Results—Twenty computed tomography perfusion and 49 perfusion-weighted imaging studies were included from 7152 articles. Although certain parameters were reported frequently, consistently, and in line with the Roadmap proposals, we found substantial heterogeneity in other parameters, and there was considerable variation and underreporting of postprocessing methodology.

Conclusions—There is substantial scope to increase homogeneity in future studies, eg, through reporting standards.

Key Words: perfusion ■ magnetic resonance imaging ■ computed tomography

Computed tomography perfusion (CTp) and magnetic resonance (MR)–derived perfusion-weighted imaging (PWI) hold promise for patient selection for reperfusion therapies in ischemic stroke by defining tissue viability. However, clinical trials that use perfusion imaging to support an extended time window for thrombolysis have, to date, been inconclusive. Although this may be because of a number of methodological issues related to perfusion thresholds, relative and absolute tissue compartment volumes, and definitions of tissue at risk, it may also reflect differences in acquisition and postprocessing of perfusion data. Indeed, the Acute Stroke Research Imaging Roadmap consensus statement has recently encouraged adherence to common acquisition protocols. In this study, we assessed the heterogeneity of current perfusion-based stroke studies to evaluate current practice and variation within the literature.

Methods

Search Strategy

The search strategy and data extraction, which incorporated manuscripts published up to August 2009, have been described in detail elsewhere. Manuscript selection criteria for this study were:

1. English Language
2. Adult (age ≥18 years) stroke patients <24 hours postictus, distinguishable from other patients described in publications by the same research group
3. Report of perfusion characteristics from studies using either first-pass CTp or MR-derived PWI for the following:
 a. Threshold values for tissue compartments
 b. Mean perfusion values in different tissue compartments
 c. Correlation of deficit volumes on perfusion imaging with lesions on other imaging modalities

Received June 20, 2011; accepted July 7, 2011.
Jeffrey L. Saver, MD, was the Guest Editor for this paper.
The online-only Data Supplement is available at http://stroke.ahajournals.org/lookup/suppl/doi:10.1161/STROKEAHA.111.629923/-/DC1.
Correspondence to Professor J.M. Wardlaw, MD, SINAPSE Collaboration, SFC Brain Imaging Research Centre, Division of Clinical Neurosciences, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK. E-mail joanna.wardlaw@ed.ac.uk
© 2011 American Heart Association, Inc.
Stroke is available at http://stroke.ahajournals.org
DOI: 10.1161/STROKEAHA.111.629923
Exclusion Criteria

1. Subjects with hemorrhagic stroke, venous infarction, or chronic occlusive cerebrovascular disease.
2. Studies of perfusion techniques other than first-pass bolus tracking CTp or MR-PWI, e.g., arterial spin labeling, CTp from triphasic helical technique, or other steady-state techniques.
3. Studies of technical development/optimization of imaging parameters for CT or PWI techniques.
4. Studies using both duplicate data and analyses from other larger included studies.

Comparison to Roadmap Criteria

Acquisition parameters from CTp and PWI studies were compared with those stated by the Acute Stroke Imaging Research Roadmap (Table 1) and graded as consistent, inconsistent, or not reported. The reporting of postprocessing parameters was also considered.

Results

A review of 7153 articles yielded 49 MR-PWI articles and 20 CTp articles (Supplemental Table; http://stroke.ahajournals.org). The manuscripts of all but 3 studies were received by the publishing journal before publication of the Roadmap.

Although several parameters were consistent with the Roadmap, acquisition parameters were heterogeneous, sometimes with a large range noted (Table 2). For example, in CT studies, there were: number of slices ranging from 1 to 4; rate of injection ranging from 2 to 20 mL/s; electric parameters of 9 different combinations of peak kilovoltage and milliamperes; and for volume of iodine in contrast, 8 combinations in 10 papers, ranging from 10.5 to 18.5 g. For MR studies, there were: 24 combinations of echo time/repetition time, number of phases of acquisition ranging from 20 to 60 phases, and number of slices ranging from 7 to 40s. Postprocessing parameters were also heterogeneous (Table 2).

Discussion

In CT and magnetic resonance imaging perfusion studies, many acquisition and postprocessing parameters are frequently unreported or heterogeneous. The impact of the observed heterogeneity is likely to be complex, and when combined with variable definitions of penumbra, may explain, at least in part, the failure to replicate promising initial results using imaging selection and end points when CTp and PWI are undertaken across multiple centers. The effect of underreporting is less clear, but the Roadmap proposals now give future authors the opportunity to state, at least in a generic manner, that such acquisition parameters have been
Table 2. Analysis of Study Acquisition and Postprocessing Parameters

<table>
<thead>
<tr>
<th>Acquisition Parameter</th>
<th>MR Studies</th>
<th>CT Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Consistent, n (%)</td>
<td>Not Consistent, n (%)</td>
</tr>
<tr>
<td>Type of sequence</td>
<td>13 (26)</td>
<td>18 (37)</td>
</tr>
<tr>
<td>Duration</td>
<td>3 (6)</td>
<td>31 (63)</td>
</tr>
<tr>
<td>Temporal resolution</td>
<td>26 (53)</td>
<td>10 (20)</td>
</tr>
<tr>
<td>TR</td>
<td>3 (6)</td>
<td>38 (78)</td>
</tr>
<tr>
<td>Field of view</td>
<td>21 (43)</td>
<td>18 (37)</td>
</tr>
<tr>
<td>Avoidance of lenses</td>
<td>2 (10)</td>
<td>2 (10)</td>
</tr>
<tr>
<td>Anatomic coverage</td>
<td>24 (49)</td>
<td>19 (39)</td>
</tr>
<tr>
<td>Slice thickness</td>
<td>26 (53)</td>
<td>18 (37)</td>
</tr>
<tr>
<td>Contast type</td>
<td>45 (92)</td>
<td>4 (8)</td>
</tr>
<tr>
<td>Contrast concentration</td>
<td>25 (51)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Injection delay</td>
<td>2 (4)</td>
<td>12 (25)</td>
</tr>
<tr>
<td>Injection rate</td>
<td>24 (49)</td>
<td>10 (20)</td>
</tr>
<tr>
<td>Power injector used</td>
<td>4 (8)</td>
<td>18 (37)</td>
</tr>
<tr>
<td>Cannula gauge</td>
<td>10 (5)</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Side of injection</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Antecubital vein used</td>
<td>15 (31)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Postprocessing parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of deconvolution</td>
<td>31/49 (63)</td>
<td>18/49 (37)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arterial input function selection laterisation*</td>
<td>19/31 (61)</td>
<td>12/31 (29)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arterial input function selection artery*</td>
<td>23/31 (74)</td>
<td>8/31 (26)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venous output function site</td>
<td>10/20 (50)</td>
<td>10/20 (50)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*MR indicates magnetic resonance; CT, computed tomography; TE, echo time; TR, repetition time; Kv, kilovoltage; sSVD, standard singular value decomposition; SVD, singular value decomposition; ICA, internal carotid artery; MCA, middle cerebral artery; ACA, anterior cerebral artery.

The upper section compares study acquisition parameters to the roadmap.

The lower section presents data for postprocessing parameters.

Proportions are those of MR papers which used deconvolution.
performed to an agreed standard, even if some acquisition parameters are deliberately omitted. Improved homogeneity of acquisition parameters may aid clinical trial conduct as well as translation to clinical practice.

Limitations of this study include focused coverage of the literature and the use of a consensus statement (the Roadmap) as a reference standard. In addition, practice may have changed since the analysis.

In conclusion, although word space is limited in journals, many details could easily be provided in an online version. Perhaps a “standard for reporting perfusion imaging” (STRPI) could be implemented following consensus on the EQUATOR Network and by journal editors.

Acknowledgements
This work was performed as part of the Multicenter Acute Stroke Imaging Study and the Stroke Imaging Repository (STIR) Task Force 1 activities (https://stir.ninds.nih.gov/html/projects.html).

Sources of Funding
This study was supported by the Translational Medicine Research Collaboration (NS-EU-082). J.W. and K.M. were supported by the Scottish Funding Council through the Scottish Imaging Network. A Platform for Scientific Excellence (SINAPSE) Collaboration (http://www.sinapse.ac.uk). R.T. was supported by a grant from The Stroke Association (Registered charity SC037789). K.D. was supported by the Patrick Berthoud Charitable Trust.

Disclosures
None.

References

Krishna A. Dani, Ralph G.R. Thomas, Francesca M. Chappell, Kirsten Shuler, Keith W. Muir and Joanna M. Wardlaw

Stroke. published online October 13, 2011;

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/early/2011/10/13/STROKEAHA.111.629923

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2011/10/13/STROKEAHA.111.629923.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/
<table>
<thead>
<tr>
<th>First Author</th>
<th>Journal</th>
<th>Year</th>
<th>Volume</th>
<th>Issue</th>
<th>First Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Touho</td>
<td>Surg. Neurol</td>
<td>1996</td>
<td>46</td>
<td>*</td>
<td>135</td>
</tr>
<tr>
<td>Rother</td>
<td>Arch Neurol</td>
<td>2000</td>
<td>57</td>
<td>1161</td>
<td>1166</td>
</tr>
<tr>
<td>Koenig</td>
<td>Stroke</td>
<td>2001</td>
<td>32</td>
<td>*</td>
<td>431</td>
</tr>
<tr>
<td>Nabvi</td>
<td>Stroke</td>
<td>2002</td>
<td>33</td>
<td>*</td>
<td>2819</td>
</tr>
<tr>
<td>Wintermark</td>
<td>Annals of Neurology</td>
<td>2002</td>
<td>51</td>
<td>*</td>
<td>417</td>
</tr>
<tr>
<td>Bisdas</td>
<td>Jnl of Comput Assist Technology</td>
<td>2004</td>
<td>28</td>
<td>6</td>
<td>747</td>
</tr>
<tr>
<td>Kloska</td>
<td>Radiology</td>
<td>2004</td>
<td>233</td>
<td>1</td>
<td>79</td>
</tr>
<tr>
<td>Schramm</td>
<td>Stroke</td>
<td>2004</td>
<td>35</td>
<td>*</td>
<td>1652</td>
</tr>
<tr>
<td>Muir</td>
<td>JNNP</td>
<td>2006</td>
<td>77</td>
<td>*</td>
<td>334</td>
</tr>
<tr>
<td>Suzuki</td>
<td>Neurol Med Chir (Tokyo)</td>
<td>2005</td>
<td>45</td>
<td>*</td>
<td>333</td>
</tr>
<tr>
<td>Murphy</td>
<td>Stroke</td>
<td>2006</td>
<td>37</td>
<td>*</td>
<td>1771</td>
</tr>
<tr>
<td>Schaefer</td>
<td>AJNR</td>
<td>2006</td>
<td>27</td>
<td>*</td>
<td>20</td>
</tr>
<tr>
<td>Wintermark</td>
<td>Stroke</td>
<td>2006</td>
<td>37</td>
<td>*</td>
<td>979</td>
</tr>
<tr>
<td>Parsons</td>
<td>Neurology</td>
<td>2007</td>
<td>68</td>
<td>10</td>
<td>730</td>
</tr>
<tr>
<td>Sparacca</td>
<td>Radiol. Med</td>
<td>2007</td>
<td>112</td>
<td>*</td>
<td>113</td>
</tr>
<tr>
<td>Murphy</td>
<td>Radiology</td>
<td>2008</td>
<td>247</td>
<td>3</td>
<td>818</td>
</tr>
<tr>
<td>Silbernagel</td>
<td>AJNR</td>
<td>2008</td>
<td>29</td>
<td>*</td>
<td>118</td>
</tr>
<tr>
<td>Hagiwara</td>
<td>Jnl of Comput Assist Technology</td>
<td>2009</td>
<td>32</td>
<td>4</td>
<td>645</td>
</tr>
</tbody>
</table>

CT Studies

- Barber Neurology 1998 51 * 418
- Bealieu Annals of Neurology 1998 46 * 568
- Rordorf Stroke 1998 29 * 939
- Karonen Stroke 1999 30 * 1583
- Neumann-Haefelin Stroke 1999 30 * 1591
- Schlaug Neurology 1999 53 * 1528
- Sorensen Radiology 1999 210 2 519
- Karonen Radiology 2000 217 * 886
- Liu JCBFM 2000 20 * 910
- Schellinger Stroke 2000 31 * 1318
- Smith Jnl of Magnetic Resonance Imaging 2000 12 * 400
- Karonen Computer Methods and Programs in Biomed. 2001 66 * 125
- Kutymans Eur Radiology 2001 10 * 1434
- Oppenheim Stroke 2001 32 * 2486
- Parsons Stroke 2001 32 * 1581
- Rohl Cerebrovasc Diseases 2001 12 * 203
- Rohl Stroke 2001 32 * 1140
- Thijss Neurology 2001 57 * 1205
- Aronen Academic Radiology 2002 9 Suppl 1 S160
- Fiehler Stroke 2002 33 * 2421
- Grandin Radiology 2002 223 * 361
- Parsons Annals of Neurology 2002 51 * 28
- Wittsack Radiology 2002 222 * 397
- Butter Stroke 2003 34 * 2159
- Igarashi Jnl of Comput Assist Technology 2003 27 * 874
- Liu Neuroradiology 2003 45 * 345
- Schaefer AJNR 2003 24 * 436
- Shih Stroke 2003 34 * 1425
- Dereux J Neurol Sciences 2004 225 * 3
- Heiss Stroke 2004 35 * 2671
- Nasel AJNR 2004 25 * 945
- Rose Jnl of Magnetic Resonance Imaging 2004 20 * 941
- Rose Stroke 2004 35 * 2466
- Sobesky Stroke 2004 35 * 2843
- Bristow JCBFM 2005 25 * 1280
- Butcher Stroke 2005 36 * 1153
- Kucinski AJNR 2005 26 * 815
- Moon Korean J Radiology 2005 6 * 75
- Seitz Jnl of Magnetic Resonance Imaging 2005 22 * 199
- Simon JCBFM 2005 25 * 1236
- Sobesky Stroke 2005 36 * 980
- Arakawa Stroke 2006 37 * 1211
- Rivers Stroke 2006 37 * 0
- Kane Stroke 2007 38 * 3158
- Akazawa Neuroradiology 2008 50 * 939
- Takasawa Stroke 2008 39 * 870
- Christensen Stroke 2009 40 * 2065
- Olivot Stroke 2009 40 * 469
- Zaro-Weber Stroke 2009 40 * 2413

MR Studies

- Barber Neurology 1998 51 * 418
- Bealieu Annals of Neurology 1998 46 * 568
- Rordorf Stroke 1998 29 * 939
- Karonen Stroke 1999 30 * 1583
- Neumann-Haefelin Stroke 1999 30 * 1591
- Schlaug Neurology 1999 53 * 1528
- Sorensen Radiology 1999 210 2 519
- Karonen Radiology 2000 217 * 886
- Liu JCBFM 2000 20 * 910
- Schellinger Stroke 2000 31 * 1318
- Smith Jnl of Magnetic Resonance Imaging 2000 12 * 400
- Karonen Computer Methods and Programs in Biomed. 2001 66 * 125
- Kutymans Eur Radiology 2001 10 * 1434
- Oppenheim Stroke 2001 32 * 2486
- Parsons Stroke 2001 32 * 1581
- Rohl Cerebrovasc Diseases 2001 12 * 203
- Rohl Stroke 2001 32 * 1140
- Thijss Neurology 2001 57 * 1205
- Aronen Academic Radiology 2002 9 Suppl 1 S160
- Fiehler Stroke 2002 33 * 2421
- Grandin Radiology 2002 223 * 361
- Parsons Annals of Neurology 2002 51 * 28
- Wittsack Radiology 2002 222 * 397
- Butter Stroke 2003 34 * 2159
- Igarashi Jnl of Comput Assist Technology 2003 27 * 874
- Liu Neuroradiology 2003 45 * 345
- Schaefer AJNR 2003 24 * 436
- Shih Stroke 2003 34 * 1425
- Dereux J Neurol Sciences 2004 225 * 3
- Heiss Stroke 2004 35 * 2671
- Nasel AJNR 2004 25 * 945
- Rose Jnl of Magnetic Resonance Imaging 2004 20 * 941
- Rose Stroke 2004 35 * 2466
- Sobesky Stroke 2004 35 * 2843
- Bristow JCBFM 2005 25 * 1280
- Butcher Stroke 2005 36 * 1153
- Kucinski AJNR 2005 26 * 815
- Moon Korean J Radiology 2005 6 * 75
- Seitz Jnl of Magnetic Resonance Imaging 2005 22 * 199
- Simon JCBFM 2005 25 * 1236
- Sobesky Stroke 2005 36 * 980
- Arakawa Stroke 2006 37 * 1211
- Rivers Stroke 2006 37 * 0
- Kane Stroke 2007 38 * 3158
- Akazawa Neuroradiology 2008 50 * 939
- Takasawa Stroke 2008 39 * 870
- Christensen Stroke 2009 40 * 2065
- Olivot Stroke 2009 40 * 469
- Zaro-Weber Stroke 2009 40 * 2413
Table 3. Reference List