Brain Natriuretic Peptide Predicts Functional Outcome in Ischemic Stroke

Natalia S. Rost, MD, MPH; Alessandro Biffi, MD; Lisa Cloonan, BS; John Chorba, MD; Peter Kelly, MD, MS; David Greer, MD, MA; Patrick Ellinor, MD; Karen L. Furie, MD, MPH

Background and Purpose—Elevated serum levels of brain natriuretic peptide (BNP) have been associated with cardioembolic stroke and increased poststroke mortality. We sought to determine whether BNP levels were associated with functional outcome after ischemic stroke.

Methods—We measured BNP in consecutive patients aged ≥18 years admitted to our stroke unit between 2002 to 2005. BNP quintiles were used for analysis. Stroke subtypes were assigned using Trial of ORG 10172 in Acute Stroke Treatment criteria. Outcomes were measured as 6-month modified Rankin Scale score (“good outcome”=0–2 versus “poor”) as well as mortality. Multivariate logistic regression was used to assess association between the quintiles of BNP and outcomes. Predictive performance of BNP as compared with clinical model alone was assessed by comparing receiver operating characteristic curves.

Results—Of 569 patients with ischemic stroke, 46% were female; mean age was 67.9±15 years. In age- and gender-adjusted analysis, elevated BNP was associated with lower ejection fraction (P<0.0001) and left atrial dilatation (P<0.001). In multivariate analysis, elevated BNP decreased the odds of good functional outcome (OR, 0.64; 95% CI, 0.41–0.98) and increased the odds of death (OR, 1.75; 95% CI, 1.36–2.24) in these patients. Addition of BNP to multivariate models increased their predictive performance for functional outcome (P=0.013) and mortality (P<0.03) after cardioembolic stroke.

Conclusions—Serum BNP levels are strongly associated with cardioembolic stroke and functional outcome at 6 months after ischemic stroke. Inclusion of BNP improved prediction of mortality in patients with cardioembolic stroke. (Stroke. 2012;43:00-00.)

Key Words: acute stroke ■ biomarkers ■ brain infarction ■ heart brain ■ outcomes

Long-term functional outcome after stroke is one of the most important and difficult variables to predict and is subject to complex interactions with multiple factors, including age, gender, ethnicity, pre-existing morbidity, stroke severity, acute interventions, and poststroke care. Use of serum biomarkers in prediction of outcomes after acute ischemic stroke is limited, because the data are predominantly based on analysis of short-term (up to 3 months) outcomes and poststroke mortality. Furthermore, no currently validated serum biomarkers are available to assist prognostication in acute ischemic stroke.

Elevated serum levels of brain natriuretic peptide (BNP), a powerful predictor of outcomes in patients with cardiovascular disease, have been associated with atrial fibrillation (AF), cardioembolic (CE) stroke, and higher poststroke mortality. However, data are controversial with regard to the potential role of BNP in prediction of long-term, functional outcomes after stroke. We sought to determine whether admission serum BNP levels are independently associated with functional outcomes after ischemic stroke.

Methods

Patient Selection
Consecutive patients aged ≥18 years admitted to our stroke unit through the emergency department between 2002 and 2005 with a diagnosis of ischemic stroke were considered for this study. The design of this ongoing single-center prospective cohort study has been described elsewhere. Ischemic stroke was defined as a clinical syndrome associated with a radiographically proven acute infarct consistent with a vascular pattern of involvement on brain CT or MRI. Diagnosis of ischemic stroke was confirmed for all subjects on admission for the index event. The Institutional Review Board approved all aspects of this study, and informed consent for
collection of data was obtained for all subjects or their legal guardians.

Data Collection and Patient Follow-Up

All patients were evaluated by a neurologist in the emergency department. Demographics and clinical characteristics including the National Institute of Health Stroke Scale (NIHSS) score, laboratory values including creatinine, medical history, and medication use before admission were obtained directly during the emergency department evaluation or abstracted prospectively by patient or proxy interview and/or supplemented through medical chart review. Vascular risk factors including hypertension, diabetes, hyperlipidemia, coronary artery disease, and AF were recorded based on existing international guidelines and as previously described. Cardiac measurements including left ventricular ejection fraction and left atrium diameter were assessed on the echocardiogram completed during the admission for the index event. Acute ischemic stroke subtypes were assigned by stroke neurologist (K.L.F.) according to Trial of ORG 10172 in Acute Stroke Treatment criteria. Based on these criteria, CE stroke was defined as one presumed to be due to an embolus arising in the heart after a comprehensive evaluation for stroke etiology including laboratory testing, imaging of the cerebral and cervical vasculature, electrocardiography, transthoracic echocardiogram, and 24-hour Holter monitoring.

Patients and their caregivers were interviewed by telephone at 3 to 6 months postacute ischemic stroke to assess functional outcome using the modified Rankin Scale score. Recurrent cerebrovascular events, newly diagnosed medical conditions, and medication use were specifically assessed in this interview. Good outcome was defined as modified Rankin Scale ≤2 at 6 months.

Blood Sampling and Natriuretic Hormone Assay

Serum was collected from each subject at enrollment and within 48 hours of admission. Samples were centrifuged and serum was extracted, aliquoted, and stored at −80°C until analysis. As previously described, serum N-terminal proBNP levels were determined using commercially available enzyme immunoassays without extraction (manufactured by Biomedica Gruppe). Assays were performed according to the manufacturer’s instructions and read with a Victor-X plate reader (Perkin-Elmer). The immunoassay for N-terminal proBNP uses an immunoaffinity purified sheep antibody specific for N-terminal proBNP (8–29); the cross-reactivity with other natriuretic peptide epitopes is <1%. All assays were performed in duplicate and normalized to a standard curve. The intra-assay and interassay variances for N-terminal proBNP were ≤5%.24

Statistical Analysis

All statistical analyses were performed using STATA 10.0. Continuous numeric variables were expressed as median ± interquartile range with the exception of age (mean ± SD). Biomarker data were log-transformed to achieve normality when used as a dependent variable. When analyzed as an independent variable, BNP level quintiles were used to more adequately quantify the effect size of the association between biomarker data and stroke subtypes, functional outcome, and mortality. Subjects were compared across stroke subtypes in univariate analyses using t test, Wilcoxon rank sum, χ², or Fisher exact test as appropriate.

Multivariate logistic regression was used to assess the association between the serum BNP and functional outcome in this cohort; multivariable linear regression was used to identify baseline predictors of BNP. All variables showing a trend in association in univariate analysis (P<0.20) were included (functional outcome model: age, gender, hypertension, AF, coronary artery disease, alcohol use, antiplatelet agent use, NIHSS score, CE stroke subtype, BNP; mortality model: age, AF, BNP, alcohol use, statin use, antiplatelet or anticoagulation agent use, NIHSS score, CE stroke subtype). Final multivariable models also included left atrium diameter and left ventricular ejection fraction, which were forced into the model to adequately account for possible confounding. Predictive performance of BNP for functional outcome was assessed by comparing receiver operating characteristic curves using multivariable models described previously. Significance threshold was set at P<0.05 (2-tailed) for all analyses.

Results

Of 569 patients with ischemic stroke, 187 (32.9%) had CE, 130 (22.9%) had large artery, 54 (9.5%) had small vessel, 143 (25.1%) had undetermined, and 55 (9.7%) had other stroke subtypes (Table 1). Mean age was 67.9 ± 15 years; 46% were female. BNP levels were higher among the older subjects (P<0.0001) and women (P<0.0002). When adjusted for age and gender, elevated BNP was associated with lower left ventricular ejection fraction (P<0.0001) and greater degree of left atrium diameter (P<0.001). Furthermore, BNP was associated with AF (OR, 2.0; 95% CI, 1.6–2.5) and CE stroke subtype (P<0.001; Figure).

In univariate analysis, age (OR, 0.96; 95% CI, 0.92–0.98), diagnosis of hypertension (OR, 0.42; 95% CI, 0.3–0.7), AF (OR, 0.5; 95% CI, 0.3–0.75), coronary artery disease (OR, 0.6; 95% CI, 0.4–0.97), NIHSS score (OR, 0.87; 95% CI, 0.84–0.9), and BNP levels (OR, 0.7; 95% CI, 0.6–0.8) were associated with functional outcome. In multivariate analysis adjusted for the previously mentioned variables as well as gender, alcohol use, prior antiplatelet agent use, and CE stroke subtype (all P<0.2), as well as left ventricular ejection fraction and left atrium diameter forced into the model, only age (OR, 0.97; 95% CI, 0.94–0.99), NIHSS score (OR, 0.86; 95% CI, 0.8–0.96), and higher BNP levels (OR, 0.64; 95% CI, 0.41–0.98) independently predicted functional outcome. Similarly, NIHSS score (OR, 1.1; 95% CI, 1.01–1.19), AF (OR, 3.6; 95% CI, 1.2–13.2), and higher BNP levels (OR, 1.75; 95% CI, 1.36–2.24) were independent predictors of mortality among these subjects (Table 2).

In a stroke subtype-based analysis, BNP remained an independent predictor of functional outcome (OR, 0.5; 95% CI, 0.3–0.9) and mortality (OR, 3.05; 95% CI, 1.1–8.2) in patients with CE stroke but not those with the non-CE stroke subtype (OR, 0.9; 95% CI, 0.7–1.1 and OR, 1.03; 95% CI, 0.9–1.1 for functional outcome and mortality, respectively). Addition of BNP to models predicting functional outcome and mortality after CE stroke increased their predictive performance (area under the curve estimate increase from 0.85 to 0.91, P=0.013 and 0.84 to 0.94, P<0.03, respectively).

Discussion

Elevated serum BNP on hospital admission for ischemic stroke independently predicted functional outcome in the large, prospective cohort of patients at 6 months poststroke. This was the first study to include transthoracic echocardiographic data into the analysis examining the association between serum levels of BNP and stroke outcome. These novel data further validate the importance of BNP in outcome prediction after stroke. Robust, widely available, rapidly processed, inexpensive biomarkers such as BNP could potentially be used in the future to guide management of complex cerebrovascular patients to maximize their potential for recovery.
Serum BNP testing as well as measurement of other natriuretic peptide family markers (such as midregional proatrial natriuretic peptide) is widely accepted as a strategy for improving diagnostic accuracy and risk stratification in congestive heart failure and other cardiovascular conditions leading to ventricular dysfunction,11 thus allowing for earlier initiation of proper treatment and, ultimately, better patient outcomes.25,26 In patients with cerebral ischemia, CE stroke subtype is often suspected on initial evaluation, either due to a known history of high-risk CE condition (such as AF) or due to evidence of arrhythmia on admission electrocardiography or during first 24 hours of cardiac monitoring.27–29 In patients with stroke, elevated serum BNP on admission may not only further confirm a CE etiology of stroke event, but also may signal increased risk for poor long-term outcome, including death.15,17,18 BNP testing has a role in risk stratification, identifying those likely to require intensive rehabilita-

Table 1. Clinical Characteristics of the Ischemic Stroke Cohort by Trial of ORG 10172 in Acute Stroke Treatment Stroke Subtype (n=569)

<table>
<thead>
<tr>
<th>Variable</th>
<th>CE</th>
<th>LA</th>
<th>SV</th>
<th>Other</th>
<th>Undetermined</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of subjects</td>
<td>187</td>
<td>130</td>
<td>54</td>
<td>55</td>
<td>143</td>
</tr>
<tr>
<td>Age, mean y (SD)</td>
<td>68.8 (16.1)</td>
<td>67.5 (12.5)</td>
<td>67.6 (11.9)</td>
<td>45.1 (13.7)</td>
<td>69.5 (14.0)</td>
</tr>
<tr>
<td>Female gender, %</td>
<td>50</td>
<td>45</td>
<td>40</td>
<td>44</td>
<td>51</td>
</tr>
<tr>
<td>White, %</td>
<td>93</td>
<td>90</td>
<td>87</td>
<td>90</td>
<td>92</td>
</tr>
<tr>
<td>Hypertension, %</td>
<td>59</td>
<td>67</td>
<td>72</td>
<td>28</td>
<td>70</td>
</tr>
<tr>
<td>Diabetes mellitus, %</td>
<td>16</td>
<td>22</td>
<td>46</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>Atrial fibrillation, %</td>
<td>46</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Coronary artery disease, %</td>
<td>25</td>
<td>18</td>
<td>26</td>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td>Tobacco use,* %</td>
<td>55</td>
<td>78</td>
<td>57</td>
<td>67</td>
<td>65</td>
</tr>
<tr>
<td>Alcohol use,† %</td>
<td>60</td>
<td>67</td>
<td>61</td>
<td>76</td>
<td>68</td>
</tr>
<tr>
<td>Antiplatelet use, %</td>
<td>43</td>
<td>47</td>
<td>50</td>
<td>20</td>
<td>46</td>
</tr>
<tr>
<td>Warfarin use, %</td>
<td>21</td>
<td>12</td>
<td>6</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>NIHSS score, median (IQR)</td>
<td>4 (1–11)</td>
<td>2 (1–5)</td>
<td>3 (2–4)</td>
<td>2 (1–5)</td>
<td>2 (1–5)</td>
</tr>
<tr>
<td>BNP, median (IQR), pg/mL</td>
<td>273 (169–400)</td>
<td>194 (139–264)</td>
<td>178 (149–232)</td>
<td>160 (114–210)</td>
<td>208 (142–329)</td>
</tr>
<tr>
<td>Creatinine, mean (SD), mg/dL</td>
<td>1.07 (0.3)</td>
<td>1.08 (0.4)</td>
<td>1.03 (0.3)</td>
<td>0.9 (0.1)</td>
<td>1.05 (0.3)</td>
</tr>
<tr>
<td>LVEF, median, IQR, %</td>
<td>65 (56–70)</td>
<td>67 (59–72)</td>
<td>65 (60–73)</td>
<td>66 (61–72)</td>
<td>67 (61–73)</td>
</tr>
<tr>
<td>LAD, median, IQR, mm</td>
<td>39 (33–43)</td>
<td>37 (33–40)</td>
<td>37 (34–41)</td>
<td>33 (31–36)</td>
<td>36 (32–41)</td>
</tr>
</tbody>
</table>

CE indicates cardioembolic; LA, left atrium; SV, stroke volume; NIHSS, National Institutes of Health Stroke Scale; IQR, interquartile range; BNP, brain natriuretic peptide; LVEF, left ventricular ejection fraction; LAD, left atrium diameter.

*Ever smoker.
†Ever moderate/heavy alcohol user.

Figure. Serum BNP levels in various stroke subtypes. After adjustment for age and gender, serum BNP was independently associated with cardioembolic as compared with all noncardioembolic (P<0.001) stroke subtypes; cardioembolic vs undetermined (P<0.001) stroke subtype; and undetermined vs small vessel or large vessel stroke subtypes (P<0.001). BNP indicates brain natriuretic peptide.

Table 2. Multivariate Predictors of Good Functional Outcome (modified Rankin Scale ≤2) and Mortality in Patients With Acute Ischemic Stroke

<table>
<thead>
<tr>
<th></th>
<th>Good Functional Outcome*</th>
<th>Mortality†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR 95% CI</td>
<td>OR 95% CI</td>
</tr>
<tr>
<td>Age</td>
<td>0.97 0.4–0.99</td>
<td>1.0 0.97–1.04</td>
</tr>
<tr>
<td>NIHSS score</td>
<td>0.86 0.8–0.96</td>
<td>1.1 1.01–1.19</td>
</tr>
<tr>
<td>BNP, pg/mL</td>
<td>0.64 0.41–0.98</td>
<td>1.75 1.36–2.24</td>
</tr>
<tr>
<td>AF</td>
<td>0.81 0.42–1.6</td>
<td>3.6 1.2–3.12</td>
</tr>
<tr>
<td>CE stroke subtype</td>
<td>1.8 0.8–2.5</td>
<td>0.48 0.16–1.45</td>
</tr>
<tr>
<td>LVEF</td>
<td>1.0 0.97–1.02</td>
<td>1.02 0.99–1.07</td>
</tr>
<tr>
<td>LAD</td>
<td>1.01 0.97–1.04</td>
<td>0.95 0.9–1.01</td>
</tr>
</tbody>
</table>

NIHSS indicates National Institutes of Health Stroke Scale; BNP, brain natriuretic peptide; AF, atrial fibrillation; CE, cardioembolic; LVEF, left ventricular ejection fraction; LAD, left atrium diameter; CI, confidence interval; OR, odds ratio.

*Multiple logistic regression model including age, gender, hypertension, AF, coronary artery disease, alcohol use, antiplatelet agent use, NIHSS score, CE stroke subtype, BNP level, LVEF, and LAD (all P<0.2 in univariate analysis).
†Multiple logistic regression model including age, AF, BNP, alcohol use, statin use, antiplatelet or anticoagulation agent use, NIHSS score, CE stroke subtype, LVEF, and LAD (all P<0.2 in univariate analysis).
tative intervention. In addition, particularly in cases of cryptogenic stroke, the BNP level could help inform the choice of antithrombotic agent for secondary stroke prevention. To improve systemic medical condition in high-risk patients with stroke and, as a result, their rehabilitation potential, BNP could also be used to determine the aggressiveness of heart failure management or intensity of postdischarge monitoring.

In our study, increasing age and stroke severity also independently lowered the odds of good functional outcome in patients with ischemic stroke. This is consistent with prior findings, possibly indicating a complex interaction between the effect of survival to older age, increased prestroke morbidity, propensity for serious complications after their acute ischemic stroke, and less caregiver support to allow poststroke recovery. The median prestroke modified Rankin Scale score of subjects enrolled in this study was 0, reflecting a population with little premorbid stroke-related disability. In this cohort, the serum BNP still independently predicted long-term mortality and poorer functional outcomes. Similarly, among the subjects with CE stroke only, increased level of BNP, but not left ventricular ejection fraction or the degree of left atrium diameter, was independently associated with functional outcome and mortality. Conversely, despite being predictive in a combined cohort of all Trial of ORG 10172 in Acute Stroke Treatment stroke subtypes, BNP levels played no significant role in prediction of outcomes among subjects with non-CE stroke. This finding attests to the strength of serum BNP as a predictor of stroke outcome.

In our study, serum BNP levels were measured on admission in patients with a diagnosis of ischemic stroke confirmed by neuroimaging. Stroke subtype assignment was based on the Trial of ORG 10172 in Acute Stroke Treatment stroke subtypes, BNP levels played no significant role in prediction of outcomes among subjects with non-CE stroke. This finding attests to the strength of association between the BNP and outcome in the CE stroke patient subset, which provided sufficient statistical power for BNP to remain significantly correlated with outcomes in the combined cohort of CE and non-CE strokes. However, BNP levels may have limited use in assessing outcomes after non-CE strokes based on the previously suggested pathophysiology of stroke subtypes and possible mechanisms of recovery. In our study, serum BNP levels were measured on admission in patients with a diagnosis of ischemic stroke confirmed by neuroimaging. Stroke subtype assignment was based on the Trial of ORG 10172 in Acute Stroke Treatment criteria and assigned by the stroke neurologist (K.L.F.) blinded to BNP measurement data or patient outcomes. Despite the potential for subtype misclassification using Trial of ORG 10172 in Acute Stroke Treatment criteria, BNP strongly differentiated CE stroke subtype from all non-CE subtypes as well as CE versus undetermined Trial of ORG 10172 in Acute Stroke Treatment stroke subtype, which often includes mixed and possibly misclassified cases.

Limitations of this analysis are largely related to the methodological issues related to retrospective review of the otherwise prospectively collected data, including residual confounding that could not be assessed within the constraints of this study design. In particular, the interaction between the timing of stroke symptom onset and BNP levels could not be evaluated. Second, we did not adjust for infantar volume; however, given that diffusion-weighted imaging infantar volume and admission NIHSS score are at least moderately correlated, we were able to partially adjust for this possible confounder. Third, serum BNP levels are subject to variability as a result of physiological changes in cardiac, pulmonary, and renal function; shock and other severe systemic conditions; medication use (especially diuretics and antihypertensive agents); and cardiac resynchronization therapy, just to name a few. There is also reported biological variability in BNP levels observed in <50% of baseline levels as well as previously reported associations of BNP with other clinical characteristics in patients with stroke, including possible effects of the time from symptom onset to BNP measurement. Therefore, our findings require validation. Finally, serum BNP added limited, albeit a statistically significant, advantage above and beyond the prognostic value of models built using clinical data alone. A future study designed for model validation in an independent ischemic stroke population would provide a better estimate of BNP’s predictive value.

Conclusions
Serum BNP levels during stroke demonstrate a reliable association with CE stroke subtype and predict functional outcome and mortality. Further studies are warranted to establish the use of serum BNP as a predictor of stroke outcome.

Sources of Funding
Supported by the National Institutes of Health—National Institute of Neurological Disorders and Stroke (NIH-NINDS) K23NS064052 (N.S.R.); NIH-NINDS S50NS051343-04 (K.L.F.); and IR01HL092577, 1R01HL104156, 5R21DA027021, 1K24HL057580 (P.T.E.); the American Heart Association/Bugher Foundation Centers for Stroke Prevention Research (077501N), and the Deane Institute for Integrative Study of Atrial Fibrillation and Stroke.

Disclosures
None.

References
12. Scirica BM, Cannon CP, Sabatine MS, Jarolim P, Sloane S, Rifai N, et al. for the PITTI Concentrations of C-reactive protein and B-type natriuretic peptide 30 days after acute coronary syndromes independently predict

Brain Natriuretic Peptide Predicts Functional Outcome in Ischemic Stroke
Natalia S. Rost, Alessandro Biffi, Lisa Cloonan, John Chorba, Peter Kelly, David Greer, Patrick Ellinor and Karen L. Furie

Stroke. published online November 23, 2011;
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/early/2011/11/23/STROKEAHA.111.629212

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/