Effect of Focal Ischemia on Long Noncoding RNAs

Ashutosh Dharap, PhD; Venkata Prasuja Nakka, PhD; Raghu Vemuganti, PhD

Background and Purpose—Long noncoding RNAs (lncRNAs) play a significant role in cellular physiology. We evaluated the effect of focal ischemia on the expression of 8314 lncRNAs in rat cerebral cortex using microarrays.

Methods—Ischemia was induced by transient middle cerebral artery occlusion. Genomic and transcriptomic correlates of the stroke-responsive lncRNAs and the transcription factor binding sites in their promoters were evaluated with bioinformatics.

Results—Three hundred fifty-nine lncRNAs were upregulated (>2-fold) and 84 were downregulated (<0.5-fold) at 3 hours to 12 hours of reperfusion after middle cerebral artery occlusion compared with sham. Sixty-two stroke-responsive lncRNAs showed >90% sequence homology with exons of protein-coding genes. Promoters of stroke-responsive lncRNA genes and their homologous protein-coding genes showed highly overlapping transcription factor binding sites.

Despite presence of open reading frames, lncRNAs did not form any product when subjected to in vitro translation.

Conclusions—Stroke significantly alters cerebral lncRNA expression profiles. (Stroke. 2012;43:00-00.)

Key Words: exon mimicry ■ noncoding RNA ■ stroke ■ transcription factor

Greater than 90% of the mammalian genome transcribes into noncoding RNAs that play critical roles in cellular homeostasis.1 We recently showed that stroke alters cerebral microRNA and piwi-interacting RNA profiles in rats.2,3 In addition to these small noncoding RNAs, the genome transcribes many long noncoding RNAs (lncRNAs; >200 nucleotides in length) that control protein targeting to genomic loci, epigenetic silencing and serve as scaffolds for multiple proteins (reviewed by Rinn et al4). lncRNAs are thought to play a role in the pathophysiology of Alzheimer disease and brain cancer.5,6 We currently evaluated the effect of focal ischemia on cortical lncRNA expression profiles.

Methods

See the online-only Data Supplement detailed methods. Transient middle cerebral artery occlusion (1 hour) was induced in adult, male spontaneously hypertensive rats (Charles River Laboratory, Wilmington, MA) with intraluminal suture under isoflurane anesthesia. RNA extracted from the ipsilateral cortex was analyzed using Arraystar IncRNA expression microarrays. Data were analyzed with GeneSpring software. The annotated, full-length lncRNA sequences (RefSeq database) were queried against rat Baylor 3.4/rm4 genome assembly to identify homology to exons of annotated protein-coding genes. Promoters of stroke-responsive lncRNAs and the homologous protein-coding genes were analyzed using the Pattern Search & Analysis tool (Genomatix GmbH).7 DNA sequences of 3 lncRNAs were cloned and subjected to in vitro transcription and translation.

Results

The distribution of lncRNA expression in the rat cerebral cortex ranged from 7 to 670,000 U (online-only Data Supplement Table I). After transient middle cerebral artery occlusion, 443 of the 8314 lncRNAs analyzed changed significantly (359 upregulated by ≥2-fold and 84 downregulated by ≥0.5-fold) at all reperfusion time points evaluated (3 hours, 6 hours, and 12 hours) compared with sham (Table 1; online-only Data Supplement Table II).

Sixty-one stroke-responsive lncRNAs showed >90% sequence similarity to the exons of protein-coding genes (exon mimicry), a majority of which are involved in transcription and translation (Table 2; online-only Data Supplement Tables III and IV). In all cases, the genomic loci of the paired stroke-responsive IncRNA and their homologous protein-coding genes were on different chromosomes. Ten TF families showed >100 hits each in the promoters of the 48 out of 61 stroke-responsive lncRNAs (Table 3; online-only Data Supplement Table V). These TF families also showed similar binding-site probabilities in the homologous protein-coding gene promoters. The ETSF TF family showed the highest overrepresentation in 37 of 48 IncRNA-gene mimic pairs (Table 3; online-only Data Supplement Table VI). Full names of the protein-coding genes that lncRNAs mimicked are given in online-only Data Supplement Table VII.

One or more open reading frames (ORFs) in 60 stroke-responsive lncRNAs showed a partial but strong conservation with their protein-coding functional homologs (online-only Data Supplement Table VIII). They showed a substantially higher number of mutations than the homologous protein-coding genes, but regions that correspond to exon junctions

Received June 27, 2012; accepted July 18, 2012.
From the Department of Neurological Surgery, University of Wisconsin, Madison, WI.
The online-only Data Supplement is available with this article at http://stroke.ahajournals.org/lookup/suppl/doi:10.1161/STROKEAHA.112.669465/-/DC1.
Correspondence to Raghu Vemuganti, PhD, Department of Neurological Surgery, University of Wisconsin, Mail Code CSC-8660, 600 Highland Avenue, Madison, WI 53792. E-mail vemuganti@neurosurgery.wisc.edu
© 2012 American Heart Association, Inc.

Stroke is available at http://stroke.ahajournals.org

DOI: 10.1161/STROKEAHA.112.669465
remained nonmutated indicating a possibility that they might undergo splicing and translation to truncated proteins. However, none of the 3 stroke-responsive lncRNAs tested (XR_005672 with 4 ORFs homologous to Eno1, XR_007365 with 3 ORFs homologous to Eef1a1 and XR_005605 with 2 ORFs homologous to RpL3) formed any proteins when tested by in vitro transcription/translation (online-only Data Supplement Figures I and II).

Discussion

The role of noncoding RNAs in ischemic brain damage is currently unknown. Recent studies showed that cerebral profiles of micro RNAs and piwi-interacting RNAs change extensively and modulate brain damage after stroke. The present study shows that ischemia also influences lncRNAs and bioinformatics showed a >90% sequence homology between many stroke-responsive lncRNA genes and protein-coding genes located on different chromosomes indicating that these lncRNAs might be pseudogenes. Previous studies showed that pseudogenes produce truncated proteins, which suppress the activity of the homologous proteins. This was shown for endothelial nitric oxide synthase in multiple species.8,9 Despite the presence of multiple ORFs with a high degree of homology with protein-coding genes, stroke-responsive lncRNAs tested experimentally failed to form proteins. This could be explained by the observations that the lncRNA genes show multiple, small ORFs in contrast to the single, continuous ORFs of the protein-coding genes, and the start and stop codons of the lncRNA ORFs did not match those of the protein-coding gene ORFs indicating codon incompatibility. The function of the lncRNAs in ischemic pathophysiology is still elusive, but they might stabilize the

Table 1. lncRNAs Altered Maximally After Stroke

<table>
<thead>
<tr>
<th>lncRNA</th>
<th>3 H</th>
<th>6 H</th>
<th>12 H</th>
<th>Chromosome</th>
<th>lncRNA</th>
<th>3 H</th>
<th>6 H</th>
<th>12 H</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRAK077719</td>
<td>47.8</td>
<td>36.2</td>
<td>20.9</td>
<td>2</td>
<td>BC086373</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>X</td>
</tr>
<tr>
<td>XR_009313</td>
<td>25.2</td>
<td>53.7</td>
<td>45.7</td>
<td>1</td>
<td>MRAK049859</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>3</td>
</tr>
<tr>
<td>XR_007365</td>
<td>23.2</td>
<td>93.2</td>
<td>101.8</td>
<td>2</td>
<td>BC103647</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
<td>11</td>
</tr>
<tr>
<td>MRAK159688</td>
<td>20.2</td>
<td>13.0</td>
<td>28.9</td>
<td>6</td>
<td>MRAK078348</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
<td>7</td>
</tr>
<tr>
<td>MRAK079854</td>
<td>20.1</td>
<td>21.5</td>
<td>13.0</td>
<td>8</td>
<td>uc.236+</td>
<td>0.3</td>
<td>0.3</td>
<td>0.5</td>
<td>16</td>
</tr>
<tr>
<td>MRAK049735</td>
<td>12.7</td>
<td>18.4</td>
<td>22.1</td>
<td>4</td>
<td>MRAK040488</td>
<td>0.3</td>
<td>0.3</td>
<td>0.5</td>
<td>15</td>
</tr>
<tr>
<td>MRAK078894</td>
<td>12.6</td>
<td>14.1</td>
<td>10.5</td>
<td>6</td>
<td>MRAK047500</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>2</td>
</tr>
<tr>
<td>XR_006073</td>
<td>12.5</td>
<td>33.0</td>
<td>42.2</td>
<td>6</td>
<td>uc.306−</td>
<td>0.3</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>XR_008501</td>
<td>12.1</td>
<td>32.4</td>
<td>35.8</td>
<td>3</td>
<td>MRAK033792</td>
<td>0.3</td>
<td>0.5</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>U77626</td>
<td>11.1</td>
<td>34.6</td>
<td>28.1</td>
<td>15</td>
<td>uc.228+</td>
<td>0.3</td>
<td>0.4</td>
<td>0.6</td>
<td>4</td>
</tr>
<tr>
<td>XR_009003</td>
<td>10.8</td>
<td>22.1</td>
<td>21.9</td>
<td>14</td>
<td>MRAK051099</td>
<td>0.3</td>
<td>0.5</td>
<td>0.3</td>
<td>10</td>
</tr>
<tr>
<td>XR_007044</td>
<td>10.6</td>
<td>27.9</td>
<td>30.9</td>
<td>17</td>
<td>MRAK053030</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>8</td>
</tr>
<tr>
<td>XR_006491</td>
<td>9.9</td>
<td>28.8</td>
<td>29.0</td>
<td>3</td>
<td>uc.408+</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>19</td>
</tr>
<tr>
<td>XR_009527</td>
<td>9.9</td>
<td>28.5</td>
<td>26.3</td>
<td>2</td>
<td>BC158779</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
<td>10</td>
</tr>
<tr>
<td>XR_006222</td>
<td>8.8</td>
<td>22.2</td>
<td>32.7</td>
<td>X</td>
<td>S39217</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td>3</td>
</tr>
</tbody>
</table>

Values are mean fold changes in the ischemic groups over sham group (≥2-fold, n=3/group; P<0.05 by analysis of variance). Three h, 6 h, and 12 h are reperfusion time points after transient middle cerebral artery occlusion. lncRNA IDs are listed per Refseq annotations. Chromosome is the chromosome from which lncRNA is transcribed.

lncRNA indicates long noncoding RNA.

Table 2. Representative Stroke-Induced lncRNAs That Showed Homology to Protein-Coding Genes

<table>
<thead>
<tr>
<th>lnc ID</th>
<th>Mimicked Gene</th>
<th>Chromosome No. of lncRNA Gene</th>
<th>Chromosome No. of mRNA Gene</th>
<th>Sequence Similarity, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRAK034983</td>
<td>Sav1</td>
<td>4</td>
<td>6</td>
<td>96.6</td>
</tr>
<tr>
<td>XR_007384</td>
<td>Rpl21</td>
<td>5</td>
<td>12</td>
<td>96.3</td>
</tr>
<tr>
<td>XR_005722</td>
<td>Actg1</td>
<td>1</td>
<td>10</td>
<td>96.1</td>
</tr>
<tr>
<td>XR_009394</td>
<td>Rpl19</td>
<td>1</td>
<td>10</td>
<td>96.1</td>
</tr>
<tr>
<td>XR_007963</td>
<td>Rpl31</td>
<td>7</td>
<td>9</td>
<td>96.0</td>
</tr>
<tr>
<td>XR_009083</td>
<td>Rpl21</td>
<td>14</td>
<td>12</td>
<td>95.9</td>
</tr>
<tr>
<td>XR_008876</td>
<td>Rpl27a</td>
<td>1</td>
<td>1</td>
<td>95.9</td>
</tr>
<tr>
<td>XR_005592</td>
<td>Ppia</td>
<td>16</td>
<td>14</td>
<td>95.8</td>
</tr>
<tr>
<td>XR_009459</td>
<td>Ppid</td>
<td>10</td>
<td>2</td>
<td>95.8</td>
</tr>
</tbody>
</table>

Exon mimicry was determined with the BLAT program of the UCSC genome browser.

lncRNA indicates long noncoding RNA.

Table 3. Top TF Families That Showed Binding Sites in the lncRNA and Pro...
mRNAs. In support, a previous study showed that RNAs of pseudogenes that transcribe at a high rate influence the translation of the mRNAs of the homologous protein-coding genes.10 Knocking-out a specific pseudogene homologous to Makorin-1 gene led to the destabilization of the Makorin-1 transcription leading to bone deformities that were reversed when the pseudogene was reintroduced.10 Because many of the stroke-responsive lncRNAs are homologous to protein-coding genes involved in ribosomal complex formation, splicing, translation initiation, and nuclear import of mRNAs, they might stabilize those mRNAs to restore the protein synthesis inhibited during the acute phase after stroke. The stroke-responsive lncRNAs might also control chromatin modifications, transcription factor activity, and apoptosis as demonstrated previously.11–13 Further studies are needed to show the significance of lncRNAs to poststroke functional outcome.

Sources of Funding
Supported by National Institutes of Health NS061071 and NS074444.

Disclosures
None.

References
Effect of Focal Ischemia on Long Noncoding RNAs
Ashutosh Dharap, Venkata Prasuja Nakka and Raghu Vemuganti

Stroke. published online September 4, 2012; *Stroke* is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/early/2012/09/04/STROKEAHA.112.669465

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2013/10/08/STROKEAHA.112.669465.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at:
http://stroke.ahajournals.org//subscriptions/
Влияние очаговой ишемии на длинные некодирующие РНК

МЕТОДИКА
Для более подробного ознакомления с методами см. дополнительные данные, доступные on-line.

Транзиторную окклюзию средней мозговой артерии (в течение 1 часа) индуцировали у взрослых самцов крыс со спонтанной гипертензией (Charles River Laboratory, Уилмингтон, Массачусетс) путем введения нити в просвет сосуда под анестезией изофлураном. Выделенные из ипсилатеральной коры РНК анализировали с использованием микрочипов Arraystar. Данные проанализировали с помощью программного обеспечения GeneSpring. Аннотированные полноразмерные последовательности днРНК (база данных RefSeq) запросили из набора генома крыс Baylor 3.4/rn4 для определения гомологичности к экзонам аннотированных генов, кодирующих белок. Промоторы чувствительных к инсульту днРНК и гомологичных генов, кодирующих белок, проанализировали методом Pattern Search & Analysis (Genomatix GmbH) [7]. ДНК последовательности 3 днРНК клонировали и подвергли транскрипции и транслации in vitro.

© American Heart Association Inc., 2012
Адрес для корреспонденции: Raghu Vemuganti, PhD, Department of Neurological Surgery, University of Wisconsin, Mail Code CSC-8660, 600 Highland Avenue, Madison, WI 53792.
E-mail: vemuganti@neurosurgery.wisc.edu

Результаты.
Распределение экспрессии днРНК в коре головного мозга крыс колебалось от 7 до 670 000 Ед (таблица I, см. дополнительные данные on-line). После транзиторной окклюзии средней мозговой артерии, экспрессия 443 из 8314 проанализированных днРНК значительно изменилась (повышение более чем в 2 раза для 359 днРНК, и снижение более чем на 50% для 84 днРНК). Выводы. Чем выше уровень экспрессии пробелов, тем выше риск развития ишемического инсульта. В настоящей работе оценили влияние очаговой ишемии на кортикальные профили экспрессии днРНК.
более всего доминировало в 37 из 48 пар днРНК-генов (таблица 3; таблица VI см. дополнительные данные on-line). Полные названия генов, кодирующих белок, эквивалентных днРНК, представлены в таблице VII (см. дополнительные данные on-line).

Для одной или более открытых рамок считывания (ОРС) в 60 чувствительных к инсульту днРНК продемонстрировали частичное, но выраженное сходство с их функциональными гомологами, кодирующими белок (таблица VIII, см. дополнительные данные on-line). В них обнаружили значительно большее число мутаций, чем в гомологических генах, кодирующих белок, но регионы, которые соответствовали сочленениям экзонов, остались без мутаций, что указывает на возможность их сплайсинга и трансляции на усеченные белки. Тем не менее ни одна из изучаемых 3 чувствительных к инсульту днРНК (XR_005672 с 4 ОРС, гомологичными Enol, XR_007365 с 3 ОРС, гомологичными Eef1a1, и XR_005605 с 2 ОРС, гомологичными RpL3) не синтезировала белок при транскрипции/трансляции in vitro (рис. I и II, см. дополнительные данные on-line).

Таблица 1. Максимально повреждаемые после инсульта днРНК

<table>
<thead>
<tr>
<th>днРНК</th>
<th>3 часа</th>
<th>6 часов</th>
<th>12 часов хромосома</th>
<th>днРНК</th>
<th>3 часа</th>
<th>6 часов</th>
<th>12 часов хромосома</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRAK077719</td>
<td>47,8</td>
<td>36,2</td>
<td>20,9</td>
<td>BC086373</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>XR_009313</td>
<td>25,2</td>
<td>53,7</td>
<td>45,7</td>
<td>MRAK049859</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
</tr>
<tr>
<td>XR_007365</td>
<td>23,2</td>
<td>93,2</td>
<td>101,8</td>
<td>BC103647</td>
<td>0,3</td>
<td>0,3</td>
<td>0,2</td>
</tr>
<tr>
<td>MRAK159688</td>
<td>20,2</td>
<td>13,0</td>
<td>28,9</td>
<td>MRAK078348</td>
<td>0,3</td>
<td>0,4</td>
<td>0,3</td>
</tr>
<tr>
<td>MRAK079854</td>
<td>20,1</td>
<td>21,5</td>
<td>13,0</td>
<td>uc.236+</td>
<td>0,3</td>
<td>0,3</td>
<td>0,5</td>
</tr>
<tr>
<td>MRAK049735</td>
<td>12,7</td>
<td>18,4</td>
<td>22,1</td>
<td>MRAK040488</td>
<td>0,3</td>
<td>0,3</td>
<td>0,5</td>
</tr>
<tr>
<td>MRAK078894</td>
<td>12,6</td>
<td>14,1</td>
<td>10,5</td>
<td>MRAK047500</td>
<td>0,3</td>
<td>0,3</td>
<td>0,4</td>
</tr>
<tr>
<td>XR_006073</td>
<td>12,5</td>
<td>33,0</td>
<td>42,2</td>
<td>uc.308-</td>
<td>0,3</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>XR_008501</td>
<td>12,1</td>
<td>32,4</td>
<td>35,8</td>
<td>MRAK033792</td>
<td>0,3</td>
<td>0,4</td>
<td>0,5</td>
</tr>
<tr>
<td>U77626</td>
<td>11,1</td>
<td>34,6</td>
<td>28,1</td>
<td>uc.228+</td>
<td>0,3</td>
<td>0,4</td>
<td>0,3</td>
</tr>
<tr>
<td>XR_009083</td>
<td>10,8</td>
<td>22,1</td>
<td>21,9</td>
<td>MRAK051099</td>
<td>0,3</td>
<td>0,5</td>
<td>0,3</td>
</tr>
<tr>
<td>XR_007044</td>
<td>10,6</td>
<td>27,9</td>
<td>30,9</td>
<td>MRAK0530300_3</td>
<td>0,4</td>
<td>0,4</td>
<td>0,4</td>
</tr>
<tr>
<td>XR_006491</td>
<td>9,9</td>
<td>28,8</td>
<td>29,0</td>
<td>uc.408+</td>
<td>0,3</td>
<td>0,3</td>
<td>0,3</td>
</tr>
<tr>
<td>XR_009527</td>
<td>9,9</td>
<td>28,5</td>
<td>26,3</td>
<td>BC158779</td>
<td>0,3</td>
<td>0,4</td>
<td>0,3</td>
</tr>
<tr>
<td>XR_006222</td>
<td>8,8</td>
<td>22,2</td>
<td>32,7</td>
<td>S39217</td>
<td>0,4</td>
<td>0,3</td>
<td>0,3</td>
</tr>
</tbody>
</table>

Примечание. Значения представляют собой кратность изменений в группах ишемии по сравнению с контрольной группой (≥ в 2 раза, n=3/группа; р<0,05, согласно результатам дисперсионного анализа). Три часа, 6 часов и 12 часов — временные точки реперфузии после транзиторной окклюзии средней мозговой артерии. Идентификаторы lncRNA перечислены в аннотации RefSeq. Указаны хромосомы, на которых транскрибируются днРНК. днРНК — длинная некодирующая РНК.

Таблица 2. Представители днРНК, транскрипция которых возрастает при ишемии, для которых обнаружили гомологию к генам, кодирующим белок

<table>
<thead>
<tr>
<th>Идентификаторы днРНК</th>
<th>Эквивалентный ген</th>
<th>Номер хромосомы гена днРНК</th>
<th>Номер хромосомы гена мРНК</th>
<th>Сходство последовательностей, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRAK034983 Sav1</td>
<td>4</td>
<td>6</td>
<td>S68435</td>
<td>96,5</td>
</tr>
<tr>
<td>XR_007384 Rpl21</td>
<td>5</td>
<td>12</td>
<td>Rpl21</td>
<td>96,3</td>
</tr>
<tr>
<td>XR_005722 Acr1g1</td>
<td>1</td>
<td>10</td>
<td>Act1g1</td>
<td>96,1</td>
</tr>
<tr>
<td>XR_009394 Rpl19</td>
<td>1</td>
<td>10</td>
<td>Rpl19</td>
<td>96,1</td>
</tr>
<tr>
<td>XR_007963 Rpl31</td>
<td>7</td>
<td>9</td>
<td>Rpl31</td>
<td>96,0</td>
</tr>
<tr>
<td>XR_009083 Rpl21</td>
<td>14</td>
<td>12</td>
<td>Rpl21</td>
<td>95,9</td>
</tr>
<tr>
<td>XR_008876 Rpl27a</td>
<td>1</td>
<td>1</td>
<td>Rpl27a</td>
<td>95,9</td>
</tr>
<tr>
<td>XR_005592 Ppia</td>
<td>16</td>
<td>14</td>
<td>Ppia</td>
<td>95,8</td>
</tr>
<tr>
<td>XR_009459 Ppid</td>
<td>10</td>
<td>2</td>
<td>Ppid</td>
<td>95,8</td>
</tr>
</tbody>
</table>

Примечание. Мимикрию экзонов обнаружили с помощью программы BLAT геномного браузера UCSC. днРНК — длинная некодирующая РНК

Таблица 3. Часто встречающиеся семейства TF, для которых обнаружили участки связывания в днРНК и промоторах генов, кодирующих белок

<table>
<thead>
<tr>
<th>Семейство</th>
<th>Число связанных промоторов днРНК</th>
<th>Число участков в промоторах днРНК</th>
<th>Число избыточно представленных промоторов генов, кодирующих белок</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETSF</td>
<td>48</td>
<td>258</td>
<td>36</td>
</tr>
<tr>
<td>HOMF</td>
<td>47</td>
<td>357</td>
<td>37</td>
</tr>
<tr>
<td>SORY</td>
<td>47</td>
<td>272</td>
<td>27</td>
</tr>
<tr>
<td>HOFX</td>
<td>45</td>
<td>263</td>
<td>25</td>
</tr>
<tr>
<td>CREB</td>
<td>46</td>
<td>156</td>
<td>22</td>
</tr>
<tr>
<td>FKHD</td>
<td>45</td>
<td>267</td>
<td>22</td>
</tr>
</tbody>
</table>

Примечание. Общее число промоторов днРНК является сочетанием участков связывания для каждого семейства TF на всех 48 промоторах. днРНК — длинная некодирующая РНК
ОБСУЖДЕНИЕ

Роль некодирующих РНК при ишемическом повреждении головного мозга в настоящее время неизвестна. В недавно проведенных исследованиях продемонстрировали, что церебральные профили микроРНК и РНК, взаимодействующих по pwi-типу, значительно изменяются и модулируют повреждение головного мозга после инсульта. Настоящее исследование показывает, что ишемия также оказывает влияние на днРНК, а с помощью методов биоинформатики продемонстрировали >90% гомологии последовательностей во многих генах чувствительных к инсульту днРНК и генов, кодирующих белок, расположенных на различных хромосомах, что свидетельствует о том, что эти днРНК могут быть псевдогенами. В ранее проведенных исследованиях показали, что псевдогены продуцируют усеченные белки, подавляющие активность гомологичных белков. Это было показано для эндотелиальной NO-синтазы гена, чувствительного к инсульту, что свидетельствует о несовместимости их кодонов. Функция днРНК в патофизиологии ишемии, по-прежнему непонятна, но они могут стабилизировать mРНК. В поддержку этого замечания в ранее проведенных исследованиях показали, что РНК псевдогенов, транскриптирующихся на высокой скорости, влияют на трансляцию mРНК гомологичных генов, кодирующих белок [10]. Выключение специфического псевдогена, гомологичного гену Makorin-1, привело к дестабилизации трансмета- рии Makorin-1, вызвавшей деформацию костей, которая прервала обратное развитие при повторном введении псевдогена [10]. Поскольку многие из чувствительных к инсульту днРНК гомологичны генам, кодирующим белок, участвующим в формировании комплекса рибо- сом, сплайсинге, иннициации трансляции и поступлении мРНК в ядро клетки, они могут стабилизировать эти mРНК для восстановления синтеза белков, подавленного во время остого периода инсульта. Чувствительные к инсульту днРНК могут также контролировать изменение хроматина, активность фактора транскрипции и апоптоз, как было показано ранее [11–13]. Для того чтобы продемонстрировать значение днРНК для функционального исхода после инсульта, необходимо проведение дальнейших исследований.

ЛИТЕРАТУРА