Carotid Intima-Media Thickness Is Associated With the Progression of Cognitive Impairment in Older Adults

Jae Hoon Moon, MD, PhD*; Soo Lim, MD, PhD*; Ji Won Han, MD; Kyoung Min Kim, MD, PhD; Sung Hee Choi, MD, PhD; Kyong Soo Park, MD, PhD; Ki Woong Kim, MD, PhD; Hak Chul Jang, MD, PhD

Background and Purpose—We investigated the association between cardiovascular risk factors, including carotid intima-media thickness (CIMT), and future risk of mild cognitive impairment (MCI) and dementia in elderly subjects.

Methods—We conducted a population-based prospective study as a part of the Korean Longitudinal Study on Health and Aging. Our study included 348 participants who were nondemented at the baseline (mean age, 71.7±6.3 years) and underwent cognitive evaluation at the 5-year follow-up. Baseline cardiovascular risk factors were compared according to the development of MCI or dementia during the study period.

Results—At the baseline evaluation, 278 subjects were cognitively normal and 70 subjects had MCI. Diagnoses of cognitive function either remained unchanged or improved during the study period in 292 subjects (nonprogression group), whereas 56 subjects showed progression of cognitive impairment to MCI or dementia (progression group). The progression group exhibited a higher prevalence of hypertension and greater CIMT compared with the nonprogression group. Other baseline cardiovascular risk factors, including sex, body mass index, diabetes mellitus, insulin resistance, total cholesterol, waist-to-hip ratio, visceral fat, pulse wave velocity, and ankle-brachial index, were not significantly different between 2 groups. The association between greater baseline CIMT and the progression of cognitive impairment was maintained after adjustment for conventional baseline risk factors of cognitive impairment. Greater baseline CIMT was also independently associated with the development of MCI in the subjects whose baseline cognitive function was normal.

Conclusions—Greater baseline CIMT was independently associated with the risk of cognitive impairment, such as MCI and dementia in elderly subjects. (Stroke. 2015;46:00-00. DOI: 10.1161/STROKEAHA.114.008170.)

Key Words: atherosclerosis • carotid intima-media thickness • dementia • mild cognitive impairment

The prevalence and incidence of cognitive impairment, such as dementia, increase rapidly with advancing age, which results in a huge socioeconomic burden.1 The worldwide occurrence of Alzheimer’s disease is estimated to be >35 million cases, and the total estimated global costs of dementia amounted to US$604 billion in 2010.2 In addition, mild cognitive impairment (MCI), which is a risk for progression to dementia but not sufficient for a diagnosis of dementia, is a common condition in old age: 15% to 42% of people aged ≥65 years are estimated to have MCI, and ≈5% to 15% of them progress to dementia annually.3,4 In this context, the discovery of modifiable risk factors for dementia or MCI is important. Recently, subclinical atherosclerosis was reported to predict cognitive decline5–7 and progression to dementia.8 Increased carotid intima-media thickness (CIMT) measured by ultrasonography is a surrogate marker of atherosclerosis and a strong predictor of future vascular events.9 This noninvasive and simply applicable marker has been reported to be associated with cognitive impairment.10–14 However, the clinical implication of this association between CIMT and cognitive impairment is limited because previous studies have demonstrated cognitive dysfunction using the performance on specific neuropsychiatric tests, rather than the diagnostic entities, including MCI and dementia. In addition, some controversies remains regarding which cardiovascular disease (CVD) risk factors best predict cognitive decline, and recently, pulse wave velocity (PWV) was also reported to be associated with cognitive decline.15 Therefore, a study investigating the...
association between CVD risk factors, including CIMT and other surrogate markers, and the future risk of clinically diagnosed MCI or dementia is required, especially in the elderly population, which shows a high prevalence of CVD and cognitive impairments.

In this study, we investigated the association between CVD risk factors and the risk of MCI and dementia at a 5-year follow-up in elderly subjects who participated in the Korean Longitudinal Study on Health and Aging (KLoSHA), which is a population-based elderly cohort.

Methods

Subjects

This study was conducted as a part of the KLoSHA study, which was designed as a population-based prospective cohort study of health, aging, and common geriatric diseases in Korean elders aged ≥65 years. At the baseline, 1,000 participants were initially enrolled and underwent baseline evaluations from September 2005 to September 2006. Among them, 503 subjects did not engage in any follow-up evaluation (200 subjects died during the study period, 197 subjects refused to participate in the follow-up evaluation, 69 subjects changed their address, and 77 subjects were out of contact). A 5-year follow-up evaluation was performed from September 2010 to September 2011, and 448 subjects completed follow-up evaluations of cognitive function. Among them, the baseline results of CVD risk factors and surrogate markers were available for 353 subjects. We excluded 5 subjects who were initially diagnosed with dementia because we intended to investigate the progression of cognitive dysfunction to dementia. Finally, a total of 348 subjects were enrolled in the study (mean age, 71.7±6.3 years; male-to-female ratio, 177:171). This study was approved by the Institutional Review Board of the Seoul National University Bundang Hospital. Subjects were fully informed regarding the study participation, and written informed consent was provided by the subjects or their legal guardians.

Diagnosis of Cognitive Impairment and Assessment of Education, Mood, and General Health Status

The Korean version of the Consortium to Establish a Registry for Alzheimer’s Disease Clinical Assessment Battery and the Korean version of the Mini International Neuropsychiatric Interview were used for the diagnosis of MCI, dementia, and other psychiatric disorders. In addition, the Korean version of the Consortium to Establish a Registry for Alzheimer’s Disease Clinical Assessment Battery Neuropsychological Assessment Battery, lexical fluency test, and digit span test were administered as described previously. MCI was diagnosed according to the revised diagnostic criteria for MCI proposed by the International Working Group on MCI using neuropsychological tests described previously. Dementia was defined by the diagnostic features of dementia described in the Diagnostic and Statistical Manual of Mental Disorders, fourth edition. Education period was self-reported via a questionnaire that addressed years of schooling. Mood was assessed using the Korean version of the Geriatric Depression Scale (GDS-K), and the Cumulative Illness Rating Scale (CIRS) was used to assess the general health status of older adults. All final diagnoses of psychiatric disorders and clinical dementia rating indices were determined by a panel of 4 research neuropsychiatrists, as described previously.

Baseline Lifestyle Characteristics

Smoking status was divided into 3 categories: current smoker if the individual smoked currently for ≥1 year; nonsmoker if the individual never smoked; and ex-smoker if the individual had smoked but quit. Alcohol consumption habits were divided into the following categories: current drinker or nondrinker. Current drinker was defined as a person who consumed >4 drinks per week (50 g/week of ethanol).

Anthropometric and Biochemical Parameters

Height, body weight, and the waist circumference were measured by standardized methods. Body mass index was calculated by determining the ratio of weight and the square of the height (expressed in kilograms per square meter). A standard mercury sphygmomanometer was used to measure blood pressure (BP) in sitting subjects after 10 minutes of rest. A second measurement was taken ≥5 minutes later in the arm that previously showed a higher measurement. The mean of these 2 measurements was used for the systolic and diastolic BP.

Plasma glucose concentration was measured in a 12 h fasting state using the glucose oxidase method, and plasma insulin concentration was measured by radioimmunoassay (Linco, St. Charles, MO). The homeostasis model assessment for insulin resistance (HOMA-IR) was calculated as reported previously. Vitamin B12 was measured by an electroluminescent immunoassay (Roche 2170; Roche, Ltd, Basel, Switzerland). Total cholesterol, blood urea nitrogen, creatinine, aspartate transaminase, and alanine transaminase were measured enzymatically using an autoanalyzer (Hitachi 747; Hitachi, Ltd, Tokyo, Japan).

Ultrasonographic Measurement of IMT and Plaque Formation in the Carotid Artery

To measure CIMT, B-mode ultrasound images were obtained using an ultrasound machine (Vivid FiVe; GE Ultrasound Europe, Solingen, Germany) with a linear array 10 MHz scan head. We performed the measurements at 1.0 cm proximal to the carotid bifurcation on the far wall of the common carotid artery on both sides as described in previous studies. IMT was defined as the distance between the media–adventitia interface and the lumen–intima interface, and the mean value of computer-based points in the region was used in this study. For each individual, CIMT was determined as the average of all measurements of both the left and right arteries. Plaque was defined according to the Mannheim consensus in which a plaque was diagnosed when the vessel wall thickness was >1.5 mm or when the vessel wall appeared to be ≥0.5 mm or 50% thicker than the surrounding wall.

Pulse Wave Velocity

PWV was determined by measuring the carotid-femoral PWV index using a VP-2000 pulse wave unit (Nippon Colin Ltd, Komaki, Japan). The carotid-femoral PWV index was calculated by measuring the time delay between the rapid upstroke of the base of simultaneously recorded pulse waves in the carotid and femoral arteries and was expressed in meters per second.

Ankle-Brachial Index

The participant rested for 5 minutes in the supine position, and systolic BP was measured in both arms. For each leg, a continuous-wave Doppler ultrasound probe was used to measure the systolic BP in the posterior tibial and dorsalis pedis arteries.

Diagnosis of Hypertension and Diabetes Mellitus

BP below 120/80 mm Hg on 2 consecutive measurements was defined as normal, prehypertension was defined as a BP between 120/80 and 139/89 mm Hg, and hypertension was defined as a BP of ≥140/90 mm Hg or medication. Normal glucose regulation was defined as a fasting glucose concentration below 5.55 mmol/L and a 2 h postprandial glucose concentration below 7.77 mmol/L; prediabetes was defined as a glucose concentration of 5.55 to 6.94 mmol/L (fasting) or 7.77 to 11.05 mmol/L (2 h postprandial), and diabetes mellitus was defined as a glucose concentration of ≥6.99 mmol/L (fasting) or ≥7.77 mmol/L (2 h postprandial) or medication.

Statistical Analysis

Values with a normal distribution were expressed as the mean±SD. Student’s t test, the chi-squared test, or a linear-by-linear association test was used for the comparison of demographic and metabolic...
parameters between the nonprogression and progression groups. Multivariable logistic regression analysis was used to estimate the multiple correlations between the development of MCI or dementia and other risk factors. We performed a receiver-operating characteristic (ROC) curve analysis to determine the cutoff value of the baseline CIMT for the development of MCI or dementia. The area under the ROC curve and the confidence interval (CI) were also assessed. All statistical analyses were performed using the SPSS software (version 18.0; SPSS, Chicago, IL). Data with a P value <0.05 were considered significant.

Results
Changes in Cognitive Status During the 5-Year Study Period
At the baseline evaluation, 278 subjects were cognitively normal and 70 subjects had MCI. After the 5-year study period, 261 subjects were normal, 81 subjects had MCI, and 6 subjects had dementia. The diagnoses of cognitive function either remained the same or improved during the study period in 292 subjects (nonprogression group), whereas 56 subjects showed a progression of cognitive impairment (progression group) to MCI (n=50) or dementia (n=6). Among the 278 subjects who were cognitively normal at the baseline, 225 subjects remained normal, MCI developed in 50 subjects, and dementia developed in 3 subjects after 5 years.

Baseline Parameters According to the Progression of Cognitive Dysfunction
We compared the baseline parameters, including CVD risk factors, between the nonprogression and progression groups (Table 1). Age was higher and the period of education was shorter in the progression group compared with the nonprogression group. The progression group showed a higher prevalence of hypertension, and CIMT was greater in the progression group than in the nonprogression group (0.81±0.11 versus 0.77±0.13 mm; P=0.023). Carotid artery plaque formation was observed more frequently in the progression group compared with the nonprogression group (78.6% versus 63.7%; P=0.020). Other baseline parameters, including sex, body mass index, diabetes mellitus, HOMA-IR, total cholesterol, blood urea nitrogen, creatinine, aspartate transaminase, alanine transaminase, vitamin B12, and the waist circumference, showed no significant differences between the progression and nonprogression groups. Baseline PWV and ABI tended to show more favorable results in the nonprogression group, and the progression group showed a lower baseline MMSE and a higher baseline GDS-K score, suggesting more impaired cognitive function and depressive mood compared with the nonprogression group. However, the differences in MMSE between the 2 groups were not statistically significant. The CIRS score, which represents global comorbid illness burden, was not different between the groups.

Association Between Baseline CIMT and Carotid Artery Plaque Formation and the Progression of Cognitive Dysfunction
We performed multivariable logistic regression analyses to investigate the independent association between baseline CIMT and carotid artery plaque formation and the progression of cognitive impairment after adjustment for other risk factors of cognitive impairment (Tables 2 and 3). The independent variables included age, education period, and hypertension in all statistical models because age and education are strong factors that affect cognitive function, and there was a difference in hypertension between the progression and nonprogression groups. Baseline neurocognitive parameters, including MMSE and GDS-K score, were added as independent variables in model 2 because these parameters are known risk factors of cognitive decline and tended to be different between the progression and nonprogression groups. Baseline CIRS, which is also known as a risk factor of cognitive impairment, was entered as an independent variable in model 3. Baseline CIMT showed an independent association with the development of MCI or dementia in all statistical models after adjusting for other risk factors, including age, education period, hypertension, MMSE, GDS-K, and CIRS (Table 2). Baseline carotid artery plaque formation did not show an independent association with the progression of cognitive impairment (Table 3).

Optimal Cutoff Values of Baseline CIMT for Predicting the Progression of Cognitive Decline
We evaluated the optimal cutoff values of baseline CIMT to predict cognitive decline using an ROC analysis. The cutoff value of baseline CIMT to predict the progression of cognitive impairment was 0.825 mm (area under the ROC curve, 0.614; sensitivity, 50.0%; specificity, 71.2%). Progression to MCI or dementia during the 5 years of this study was observed in 11.9% of the 236 subjects who exhibited a CIMT at the baseline CIMT <0.825 mm, whereas 25.0% of the 112 subjects whose baseline CIMT was ≥0.825 mm or >0.825 mm showed progression.

Association Between Baseline CIMT and Carotid Artery Plaque Formation and the Development of MCI in Cognitively Normal Subjects
We also investigated the association between baseline CIMT and the development of MCI from normal cognition in the 275 subjects who were cognitively normal at the baseline and not demented at the follow-up evaluation. CIMT was also greater in the subjects who developed MCI compared with the subjects who remained normal at the follow-up cognitive evaluation (0.82±0.11 versus 0.77±0.14 mm, P=0.021; Table I in the online-only Data Supplement). Carotid artery plaque formation was observed more frequently among the subjects who developed MCI compared with the subjects who remained normal (80.0% versus 63.6%, P=0.026; Table I in the online-only Data Supplement). Baseline CIMT showed an independent association with the development of MCI from normal cognition after adjusting for age, education period, hypertension, MMSE, GDS-K, and CIRS (Table II in the online-only Data Supplement). Baseline carotid artery plaque formation tended to be associated with the development of MCI after adjustment (Table III in the online-only Data Supplement).

The cutoff value of baseline CIMT to predict the development of MCI from normal cognition was 0.805 mm (area under the ROC curve, 0.627; sensitivity, 56.0%; specificity,
MCI was developed in 12.7% of the 173 normal subjects with a baseline CIMT <0.805 mm, whereas 27.5% of the 102 normal subjects whose baseline CIMT was ≥0.805 mm were diagnosed to have MCI after 5 years.

Discussion

In this prospective study, we demonstrated that greater baseline CIMT and carotid artery plaque formation were associated with cognitive decline and that increased CIMT in particular was an independent risk factor for the future progression of cognitive dysfunction in the elderly. Recent large-scale prospective cohort studies have demonstrated that CVD risk factors, including 10-year CVD risk scores and individual CVD risk factors, are associated with cognitive decline. Moreover, previous prospective studies have suggested greater CIMT as a risk factor to predict cognitive decline in the general population, and in patients with Alzheimer’s disease. However, in the present study, we evaluated cognitive decline with the development of MCI or dementia using widely accepted diagnostic criteria not the specific cognitive function tests. Therefore, the present study not only reaffirmed the association between greater CIMT and cognitive decline, but also suggested that this association is clinically important. In addition, we performed a comprehensive evaluation of subclinical atherosclerosis, such as carotid artery plaque formation, CIMT, and pulse wave velocity.

Table 1. Baseline Parameters According to the Progression of Cognitive Dysfunction

<table>
<thead>
<tr>
<th>Group</th>
<th>Nonprogression Group (n=292)</th>
<th>Progression Group (n=56)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>71.5±5.9</td>
<td>74.0±7.8</td>
<td>0.027†</td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>147/145</td>
<td>30/26</td>
<td>0.658‡</td>
</tr>
<tr>
<td>Education, y</td>
<td>9.4±5.4</td>
<td>7.5±5.4</td>
<td>0.022†</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>24.3±2.9</td>
<td>24.2±3.7</td>
<td>0.806*</td>
</tr>
<tr>
<td>Smoking, n (%)</td>
<td></td>
<td></td>
<td>0.809§</td>
</tr>
<tr>
<td>Non/Ex/Current smoker</td>
<td>170/91/31 (58.2/31.2/10.6)</td>
<td>34/16/6 (60.7/28.6/10.7)</td>
<td></td>
</tr>
<tr>
<td>Alcohol, n (%)</td>
<td></td>
<td></td>
<td>0.780‡</td>
</tr>
<tr>
<td>Non/Current drinker</td>
<td>202/90 (69.2/30.8)</td>
<td>37/18 (67.3/32.7)</td>
<td></td>
</tr>
<tr>
<td>Stroke history, n (%)</td>
<td></td>
<td></td>
<td>0.799§</td>
</tr>
<tr>
<td>Yes/No</td>
<td>27/265 (9.2/90.8)</td>
<td>4/52 (7.1/92.9)</td>
<td></td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td></td>
<td></td>
<td>0.042†</td>
</tr>
<tr>
<td>Normal/prehypertension/hypertension</td>
<td>69/33/190 (23.6/11.3/65.1)</td>
<td>7/5/44 (12.5/8.9/78.6)</td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus, n (%)</td>
<td></td>
<td></td>
<td>0.669§</td>
</tr>
<tr>
<td>Normal/prediabetes/diabetes mellitus</td>
<td>46/135/111 (15.8/46.2/38.0)</td>
<td>11/24/21 (19.6/42.9/37.5)</td>
<td></td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>1.49±1.01</td>
<td>1.28±0.78</td>
<td>0.151*</td>
</tr>
<tr>
<td>Total cholesterol, mg/dL</td>
<td>201.7±35.7</td>
<td>206.0±45.8</td>
<td>0.433*</td>
</tr>
<tr>
<td>BUN, mg/dL</td>
<td>16.2±4.8</td>
<td>16.7±4.8</td>
<td>0.502*</td>
</tr>
<tr>
<td>Cr, mg/dL</td>
<td>1.11±0.23</td>
<td>1.10±0.19</td>
<td>0.663*</td>
</tr>
<tr>
<td>AST, mg/dL</td>
<td>26.1±14.7</td>
<td>24.7±10.8</td>
<td>0.507*</td>
</tr>
<tr>
<td>ALT, mg/dL</td>
<td>24.3±13.9</td>
<td>21.9±12.5</td>
<td>0.239*</td>
</tr>
<tr>
<td>Vitamin B12, pg/mL</td>
<td>660.0±317.3</td>
<td>629.6±292.5</td>
<td>0.507*</td>
</tr>
<tr>
<td>Waist circumference, cm</td>
<td>86.2±9.2</td>
<td>86.3±8.9</td>
<td>0.951*</td>
</tr>
<tr>
<td>CIMT, mm</td>
<td>0.77±0.13</td>
<td>0.81±0.11</td>
<td>0.023†</td>
</tr>
<tr>
<td>Carotid artery plaque, n (%)</td>
<td></td>
<td></td>
<td>0.020‡</td>
</tr>
<tr>
<td>Yes/No</td>
<td>184/106 (63.7/36.3)</td>
<td>44/12 (78.6/21.4)</td>
<td></td>
</tr>
<tr>
<td>PWV, m/s</td>
<td>8.8±1.6</td>
<td>8.2±1.6</td>
<td>0.071*</td>
</tr>
<tr>
<td>ABI</td>
<td>0.94±0.11</td>
<td>0.91±0.11</td>
<td>0.059*</td>
</tr>
<tr>
<td>MMSE</td>
<td>25.5±3.1</td>
<td>24.8±2.9</td>
<td>0.077*</td>
</tr>
<tr>
<td>GDS-K</td>
<td>9.2±6.7</td>
<td>11.2±7.0</td>
<td>0.042*</td>
</tr>
<tr>
<td>CIRS</td>
<td>3.9±2.5</td>
<td>4.1±2.4</td>
<td>0.546*</td>
</tr>
</tbody>
</table>

Data are expressed as mean±SD. ABI indicates ankle-brachial index; ALT, alanine transaminase; AST, aspartate transaminase; BMI, body mass index; BUN, blood urea nitrogen; Cr, creatinine; CIMT, carotid intima-media thickness; HOMA-IR, homeostasis model assessment for insulin resistance; MMSE, mini-mental state examination; and PWV, pulse wave velocity.

*Derived from Student’s t test.
†P<0.05.
‡Derived from the Chi-squared test.
§Derived from a linear-by-linear association test.
as carotid plaque formation, PWV, and ABI, as well as various CVD risk factors, including body mass index, hypertension, diabetes mellitus, HOMA-IR, and cholesterol levels. Among these, CIMT showed superiority in predicting clinically significant cognitive decline than other surrogate markers of subclinical atherosclerosis and CVD risk factors. At present, it remains unclear whether a vascular pathology such as increased CIMT can cause cognitive decline in elderly subjects or whether it just develops as an early vascular response associated with neuronal degeneration. Moreover, in our observational study, we cannot exclude the reverse causality. Recent studies have evidenced that vascular dysfunctions are involved in the pathogenesis of not only vascular dementia but also Alzheimer’s disease. Vascular dysfunction is related with atherosclerotic lesions and results in the restriction of oxygen and glucose supply to the brain. The elevation of amyloid β (Aβ), which is a pathogenic peptide of Alzheimer’s disease, also affects vascular pathology and exacerbates blood flow restriction to the brain, and vascular dysfunction can result in reduced Aβ clearance across the blood–brain barrier. In this context, it was suggested that vascular dysfunction and Aβ deposition have synergistic effects on neuronal degeneration. Oxidative stress is also a common pathogenic mechanism between vascular dysfunction and Alzheimer’s disease. Oxidative stress, which may induce vascular damage, is directly related to Aβ deposition in the brain. Based on these concepts, CIMT can be suggested as an important tool for the early detection of cognitive dysfunction, including MCI and dementia, despite the possibility of reverse causality. This study highlighted some important clinical implications. Our results suggest that the elderly individuals with a larger CIMT have a higher future risk of progression to MCI.

Table 2. Logistic Regression Analysis of Cognitive Dysfunction Risk Factors With the Progression of Cognitive Dysfunction

<table>
<thead>
<tr>
<th>Risk Factors</th>
<th>Model 1 HR (95% CI)</th>
<th>P Value</th>
<th>Model 2 HR (95% CI)</th>
<th>P Value</th>
<th>Model 3 HR (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>1.038 (0.995–1.082)</td>
<td>0.085*</td>
<td>1.043 (0.999–1.089)</td>
<td>0.054*</td>
<td>1.045 (1.001–1.091)</td>
<td>0.047†</td>
</tr>
<tr>
<td>Education</td>
<td>0.942 (0.890–0.997)</td>
<td>0.040†</td>
<td>0.969 (0.902–1.040)</td>
<td>0.378</td>
<td>0.973 (0.904–1.046)</td>
<td>0.459</td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prehypertension vs normal</td>
<td>1.221 (0.346–4.302)</td>
<td>0.756</td>
<td>1.218 (0.343–4.323)</td>
<td>0.760</td>
<td>1.671 (0.456–6.120)</td>
<td>0.439</td>
</tr>
<tr>
<td>Hypertension vs normal</td>
<td>1.878 (0.793–4.446)</td>
<td>0.152</td>
<td>1.765 (0.742–4.199)</td>
<td>0.199</td>
<td>2.115 (0.829–5.392)</td>
<td>0.117</td>
</tr>
<tr>
<td>Baseline CIMT</td>
<td>1.240 (1.002–1.535)</td>
<td>0.048†</td>
<td>1.249 (1.007–1.550)</td>
<td>0.043†</td>
<td>1.251 (1.006–1.555)</td>
<td>0.044†</td>
</tr>
<tr>
<td>Baseline MMSE</td>
<td>0.976 (0.873–1.092)</td>
<td>0.673</td>
<td>0.958 (0.852–1.076)</td>
<td>0.467</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline GDS-K</td>
<td>1.034 (0.987–1.082)</td>
<td>0.157</td>
<td>1.037 (0.990–1.087)</td>
<td>0.128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline CIRS</td>
<td>0.991 (0.872–1.125)</td>
<td>0.886</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The dependent variable was the progression of cognitive dysfunction in all statistical models. Cognitive dysfunction risk factors at baseline evaluation entered as independent variables. Age, education, hypertension, and CIMT were included as independent variables in all statistical models. Baseline MMSE and GDS-K were included as independent variables in model 2 to 3. Baseline CIRS was included as an independent variable in model 3. CI indicates confidence interval; CIMT, carotid intima-media thickness; CIRS, cumulative illness rating scale; GDS-K, Korean version of geriatric depression scale; HR, hazard ratio; and MMSE, mini-mental state examination.

*P<0.10.
†P<0.05.

Table 3. Logistic Regression Analysis of Cognitive Dysfunction Risk Factors With the Progression of Cognitive Dysfunction

<table>
<thead>
<tr>
<th>Risk Factors</th>
<th>Model 1 HR (95% CI)</th>
<th>P Value</th>
<th>Model 2 HR (95% CI)</th>
<th>P Value</th>
<th>Model 3 HR (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>1.039 (0.996–1.084)</td>
<td>0.075*</td>
<td>1.044 (1.000–1.090)</td>
<td>0.050*</td>
<td>1.046 (1.001–1.093)</td>
<td>0.044†</td>
</tr>
<tr>
<td>Education</td>
<td>0.946 (0.894–1.000)</td>
<td>0.050*</td>
<td>0.971 (0.905–1.042)</td>
<td>0.410</td>
<td>0.975 (0.907–1.048)</td>
<td>0.489</td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prehypertension vs normal</td>
<td>1.204 (0.343–4.222)</td>
<td>0.772</td>
<td>1.172 (0.331–4.150)</td>
<td>0.805</td>
<td>1.559 (0.426–5.708)</td>
<td>0.503</td>
</tr>
<tr>
<td>Hypertension vs normal</td>
<td>1.824 (0.767–4.335)</td>
<td>0.174</td>
<td>1.694 (0.709–4.051)</td>
<td>0.236</td>
<td>2.206 (0.795–5.165)</td>
<td>0.139</td>
</tr>
<tr>
<td>Baseline carotid artery plaque</td>
<td>1.871 (0.926–3.780)</td>
<td>0.081*</td>
<td>1.791 (0.875–3.664)</td>
<td>0.130</td>
<td>1.750 (0.849–3.608)</td>
<td>0.130</td>
</tr>
<tr>
<td>Yes vs no</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline MMSE</td>
<td>0.976 (0.872–1.092)</td>
<td>0.666</td>
<td>0.957 (0.851–1.076)</td>
<td>0.463</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline GDS-K</td>
<td>1.029 (0.983–1.078)</td>
<td>0.223</td>
<td>1.031 (0.984–1.080)</td>
<td>0.204</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline CIRS</td>
<td>0.994 (0.877–1.127)</td>
<td>0.924</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The dependent variable was the progression of cognitive dysfunction in all statistical models. Cognitive dysfunction risk factors at baseline evaluation entered as independent variables. Age, education, hypertension, and CIMT were included as independent variables in all statistical models. Baseline MMSE and GDS-K were included as independent variables in model 2 to 3. Baseline CIRS was included as an independent variable in model 3. CI indicates confidence interval; CIMT, carotid intima-media thickness; CIRS, cumulative illness rating scale; GDS-K, Korean version of geriatric depression scale; HR, hazard ratio; and MMSE, mini-mental state examination.

*P<0.10.
†P<0.05.
or dementia; therefore, they might require a more intensive monitoring for the earlier detection of cognitive dysfunction. Although the diagnostic power of this tool is limited, the cutoff value of the baseline CIMT to predict the progression of cognitive impairment was 0.825 mm (0.805 mm for the development of MCI), and this value was similar with the previously provided CIMT cut-off values for predicting stroke and CVD.\(^9\) The hazard ratio for the progression of cognitive impairment per 0.1 mm increase in CIMT was about 1.25 (1.33 for the development of MCI), and this was higher than known hazard ratio for stroke (1.09–1.17) and myocardial infarction (1.07–1.16).\(^9\) Moreover, it is noticeable that CIMT was not associated with future risk of dementia in MCI subjects in this study (data not shown), whereas it was associated with future risk of MCI in the elderly subjects with normal cognitive function. These results suggest that CIMT can be helpful only for predicting the early stage of cognitive impairment and may not predict advanced changes of neuronal degeneration in the elderly; thus, further investigation is needed because the number of cases that developed dementia in this study was small (n=6), and the statistical power might have been insufficient.

One of the potential limitations of the present study was the inclusion of subjects with a stroke history at the baseline evaluation in the analyses. After 31 subjects with a stroke history were excluded, CIMT tended to be greater in the progression group compared with the nonprogression group (0.81±0.11 versus 0.77±0.14 mm; P=0.072), and the logistic regression analysis also showed an associative tendency with the progression of cognitive impairment after adjusting for other factors (hazard ratio =1.238, P=0.066). Therefore, it is possible that stroke history was a confounding factor of the association between CIMT and cognitive decline. However, there was no difference in stroke history between the progression and nonprogression groups, and CIMT showed an independent association with the progression of cognitive impairment when stroke history was entered as an independent variable, instead of hypertension, in the logistic regression analysis (hazard ratio =1.255, P=0.042). Another limitation was the low follow-up rate of our cohort of older adults, which could lead to a selection bias. However, in the comparison of baseline parameters between included and excluded subjects in this study (data not shown), excluded subjects were older, more likely to be women, less educated, showed lower body mass index, and had higher rate of stroke history, lower MMSE score (poorer baseline cognitive function), and higher GDS-K score (more depressive). CIMT was greater in excluded subjects than in included subjects. Taken together, excluded subjects had higher risk for cognitive decline and showed greater CIMT. Therefore, if the excluded subjects had been included in the analyses, the observed correlation between greater CIMT and cognitive decline could have been strengthened.

Conclusions

This study demonstrated that a greater baseline CIMT was associated with the progression of cognitive dysfunction to MCI and dementia after a 5-year follow-up in old subjects. This association was maintained after adjusting for other risk factors of cognitive impairment, including age, education, hypertension, depression, and other comorbidities. These results suggest that elderly subjects with a greater CIMT require a more intensive follow-up for the earlier detection of cognitive decline.

Sources of Funding

This study was supported by a grant from the Korean Health Technology Research and Development Project, Ministry for Health, Welfare, and Family Affairs (No. A092077) and National Research Foundation grant, Ministry of Education, Science, and Technology (No. 2006–2005410), Republic of Korea.

Disclosures

None.

References

Carotid Intima-Media Thickness Is Associated With the Progression of Cognitive Impairment in Older Adults
Jae Hoon Moon, Soo Lim, Ji Won Han, Kyoung Min Kim, Sung Hee Choi, Kyong Soo Park, Ki Woong Kim and Hak Chul Jang

Stroke. published online March 3, 2015;
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/early/2015/03/03/STROKEAHA.114.008170

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2015/03/03/STROKEAHA.114.008170.DC1
http://stroke.ahajournals.org/content/suppl/2016/04/06/STROKEAHA.114.008170.DC2
http://stroke.ahajournals.org/content/suppl/2016/04/10/STROKEAHA.114.008170.DC3

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/
Supplementary Table I. Baseline parameters according to the development of MCI in the subjects with normal baseline cognition

<table>
<thead>
<tr>
<th>Group</th>
<th>non-progression group (n = 225)</th>
<th>progression group (n = 50)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>71.0 ± 5.8</td>
<td>73.8 ± 7.7</td>
<td>0.019<sup>a</sup>,*</td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>118/107</td>
<td>29/21</td>
<td>0.476<sup>b</sup></td>
</tr>
<tr>
<td>Education (yr)</td>
<td>10.2 ± 5.4</td>
<td>7.7 ± 5.4</td>
<td>0.004<sup>a</sup>,*</td>
</tr>
<tr>
<td>BMI (kg/m<sup>2</sup>)</td>
<td>24.5 ± 2.7</td>
<td>24.2 ± 3.8</td>
<td>0.581<sup>a</sup></td>
</tr>
<tr>
<td>Smoking, n (%)</td>
<td></td>
<td></td>
<td>0.776<sup>c</sup></td>
</tr>
<tr>
<td>Non/Ex/Current smoker</td>
<td>128/70/27 (56.9/31.1/12.0)</td>
<td>30/14/6 (57.5/30.5/12.0)</td>
<td></td>
</tr>
<tr>
<td>Alcohol, n (%)</td>
<td></td>
<td></td>
<td>0.408<sup>b</sup></td>
</tr>
<tr>
<td>Non/Current drinker</td>
<td>156/69 (69.3/30.7)</td>
<td>31/18 (63.3/36.7)</td>
<td></td>
</tr>
<tr>
<td>Stroke history, n (%)</td>
<td></td>
<td></td>
<td>0.630<sup>b</sup></td>
</tr>
<tr>
<td>Yes/No</td>
<td>18/207 (8.0/92.0)</td>
<td>3/47 (6.0/94.0)</td>
<td></td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td></td>
<td></td>
<td>0.062<sup>c</sup></td>
</tr>
<tr>
<td>Normal/Prehypertension/Hypertension</td>
<td>55/26/144 (24.4/11.6/64.0)</td>
<td>7/4/39 (14.0/8.0/78.0)</td>
<td></td>
</tr>
<tr>
<td>Diabetes, n (%)</td>
<td></td>
<td></td>
<td>0.393<sup>c</sup></td>
</tr>
<tr>
<td>Normal/Prediabetes/Diabetes</td>
<td>40/112/73 (17.8/49.8/32.4)</td>
<td>8/22/20 (16.0/44.0/40.0)</td>
<td></td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>1.47 ± 0.85</td>
<td>1.31 ± 0.81</td>
<td>0.226<sup>a</sup></td>
</tr>
<tr>
<td>Total cholesterol (mg/dl)</td>
<td>202.8 ± 34.8</td>
<td>206.3 ± 46.8</td>
<td>0.621<sup>a</sup></td>
</tr>
<tr>
<td>BUN (mg/dl)</td>
<td>16.3 ± 4.8</td>
<td>16.6 ± 4.7</td>
<td>0.673<sup>a</sup></td>
</tr>
<tr>
<td>Cr (mg/dl)</td>
<td>1.12 ± 0.24</td>
<td>1.11 ± 0.19</td>
<td>0.728<sup>a</sup></td>
</tr>
<tr>
<td>AST (mg/dl)</td>
<td>25.9 ± 15.9</td>
<td>24.9 ± 11.3</td>
<td>0.688<sup>a</sup></td>
</tr>
<tr>
<td>ALT (mg/dl)</td>
<td>23.9 ± 13.1</td>
<td>22.6 ± 13.0</td>
<td>0.545<sup>a</sup></td>
</tr>
<tr>
<td>Vitamin B12 (pg/ml)</td>
<td>683.0 ± 329.7</td>
<td>629.9 ± 307.3</td>
<td>0.299<sup>a</sup></td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>86.3 ± 8.9</td>
<td>86.8 ± 8.6</td>
<td>0.786<sup>a</sup></td>
</tr>
<tr>
<td>CIMT (mm)</td>
<td>0.77 ± 0.14</td>
<td>0.82 ± 0.11</td>
<td>0.021<sup>a</sup>,*</td>
</tr>
<tr>
<td>Carotid artery plaque, n (%)</td>
<td></td>
<td></td>
<td>0.026<sup>b</sup>,*</td>
</tr>
<tr>
<td>Yes/No</td>
<td>143/82 (63.6/36.4)</td>
<td>40/10 (80.0/20.0)</td>
<td></td>
</tr>
<tr>
<td>PWV (m/sec)</td>
<td>8.7 ± 1.7</td>
<td>8.2 ± 1.2</td>
<td>0.185<sup>a</sup></td>
</tr>
<tr>
<td>ABI</td>
<td>0.94 ± 0.11</td>
<td>0.90 ± 0.11</td>
<td>0.105<sup>a</sup></td>
</tr>
<tr>
<td>MMSE</td>
<td>26.2 ± 2.7</td>
<td>25.1 ± 2.7</td>
<td>0.006<sup>a</sup>,*</td>
</tr>
<tr>
<td>GDS-K</td>
<td>8.6 ± 6.5</td>
<td>11.0 ± 7.0</td>
<td>0.021<sup>a</sup>,*</td>
</tr>
<tr>
<td>CIRS</td>
<td>3.9 ± 2.5</td>
<td>4.0 ± 2.5</td>
<td>0.696<sup>a</sup></td>
</tr>
</tbody>
</table>
Data are expressed as mean ± SD.
BMI, body Mass index; HOMA-IR, homeostasis model assessment for insulin resistance; BUN, blood urea nitrogen; Cr, creatinine; AST, aspartate transaminase; ALT, alanine transaminase; CIMT, carotid intima-media thickness; PWV, pulse wave velocity; ABI, ankle-brachial index; MMSE, mini-mental state examination; GDS-K, Korean version of geriatric depression scale, CIRS, cumulative illness rating system.

a Derived from Student's t test.
b Derived from the Chi-squared test.
c Derived from a linear-by-linear association test.

*p < 0.05
Supplementary Table II. Logistic regression analysis of cognitive dysfunction risk factors with the development of MCI in the subjects with normal baseline cognition

<table>
<thead>
<tr>
<th>Risk factors</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>95% CI for HR</td>
<td>p</td>
</tr>
<tr>
<td>Age</td>
<td>1.044</td>
<td>0.997 - 1.093</td>
<td>0.068†</td>
</tr>
<tr>
<td>Education</td>
<td>0.921</td>
<td>0.866 - 0.979</td>
<td>0.008*</td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prehypertension vs. normal</td>
<td>0.808</td>
<td>0.199 - 3.278</td>
<td>0.765</td>
</tr>
<tr>
<td>hypertension vs. normal</td>
<td>1.666</td>
<td>0.682 - 4.070</td>
<td>0.263</td>
</tr>
<tr>
<td>Baseline CIMT</td>
<td>1.281</td>
<td>1.021 - 1.609</td>
<td>0.033*</td>
</tr>
<tr>
<td>Baseline MMSE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline GDS-K</td>
<td>0.914</td>
<td>0.801 - 1.044</td>
<td>0.187</td>
</tr>
<tr>
<td>Baseline CIRS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The dependent variable was the development of MCI in all statistical models. Cognitive dysfunction risk factors at baseline evaluation entered as independent variables. Age, education, hypertension, and CIMT were included as independent variables in all statistical models. Baseline MMSE and GDS-K were included as independent variables in model 2 to 3. Baseline CIRS was included as an independent variable in model 3. MCI, mild cognitive impairment; HR, hazard ratio; CI, confidence interval; CIMT, carotid intima-media thickness; MMSE, mini-mental state examination; GDS-K, Korean version of geriatric depression scale; CIRS, cumulative illness rating scale.

* p < 0.05
† p < 0.10
Supplementary Table III. Logistic regression analysis of cognitive dysfunction risk factors with the development of MCI the subjects with normal baseline cognition

<table>
<thead>
<tr>
<th>Risk factors</th>
<th>Model 1</th>
<th></th>
<th></th>
<th></th>
<th>Model 2</th>
<th></th>
<th></th>
<th></th>
<th>Model 3</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>95% CI for HR</td>
<td>p</td>
<td>HR</td>
<td>95% CI for HR</td>
<td>p</td>
<td>HR</td>
<td>95% CI for HR</td>
<td>p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>1.044</td>
<td>0.997 - 1.094</td>
<td>0.069 †</td>
<td>1.047</td>
<td>0.998 - 1.099</td>
<td>0.058 †</td>
<td>1.054</td>
<td>1.003 - 1.107</td>
<td>0.037 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>0.926</td>
<td>0.872 - 0.984</td>
<td>0.013 *</td>
<td>0.965</td>
<td>0.896 - 1.039</td>
<td>0.344</td>
<td>0.972</td>
<td>0.900 - 1.051</td>
<td>0.481</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
</tr>
<tr>
<td>prehypertension vs. normal</td>
<td>0.875</td>
<td>0.220 - 3.482</td>
<td>0.849</td>
<td>0.750</td>
<td>0.182 - 3.094</td>
<td>0.691</td>
<td>1.085</td>
<td>0.263 - 4.475</td>
<td>0.911</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hypertension vs. normal</td>
<td>1.670</td>
<td>0.682 - 4.089</td>
<td>0.262</td>
<td>1.401</td>
<td>0.564 - 3.479</td>
<td>0.467</td>
<td>1.645</td>
<td>0.621 - 4.359</td>
<td>0.317</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline carotid artery plaque</td>
<td></td>
</tr>
<tr>
<td>yes vs. no</td>
<td>2.091</td>
<td>0.966 - 4.526</td>
<td>0.061 †</td>
<td>2.125</td>
<td>0.959 - 4.707</td>
<td>0.063 †</td>
<td>2.158</td>
<td>0.956 - 4.871</td>
<td>0.064 †</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline MMSE</td>
<td>0.914</td>
<td>0.799 - 1.046</td>
<td>0.192</td>
<td>0.870</td>
<td>0.753 - 1.006</td>
<td>0.060 †</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline GDS-K</td>
<td>1.025</td>
<td>0.973 - 1.080</td>
<td>0.345</td>
<td>1.026</td>
<td>0.972 - 1.082</td>
<td>0.356</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline CIRS</td>
<td>0.989</td>
<td>0.860 - 1.138</td>
<td>0.877</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The dependent variable was the development of MCI in all statistical models. Cognitive dysfunction risk factors at baseline evaluation entered as independent variables. Age, education, hypertension, and CIMT were included as independent variables in all statistical models. Baseline MMSE and GDS-K were included as independent variables in model 2 to 3. Baseline CIRS was included as an independent variable in model 3. MCI, mild cognitive impairment; HR, hazard ratio; CI, confidence interval; MMSE, mini-mental state examination; GDS-K, Korean version of geriatric depression scale; CIRS, cumulative illness rating scale.

*p < 0.05

†p < 0.10
Carotid Intima-Media Thickness Is Associated With the Progression of Cognitive Impairment in Older Adults

Jae Hoon Moon, MD, PhD; Soo Lim, MD, PhD; Ji Won Han, MD, et al.

Departments of 1 Internal Medicine; and 2 Neuropsychiatry, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea.

Abstract

頸動脈内膜中膜肥厚は高齢者の認知障害の進行と関連する

Carotid Intima-Media Thickness Is Associated With the Progression of Cognitive Impairment in Older Adults

Jae Hoon Moon, MD, PhD; Soo Lim, MD, PhD; Ji Won Han, MD, et al.

Departments of 1 Internal Medicine; and 2 Neuropsychiatry, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea.

背景および目的：本研究では、高齢者における頸動脈内膜中膜肥厚（CIMT）などの血管リスク因子と認知障害（MCI）および認知症の将来のリスクの関連性について調査した。

方法：健康と加齢に関する韓国の継続的検査（Korean Longitudinal Study on Health and Aging）の一環として地域住民を対象とした前向き研究を実施した。試験開始時に認知障害がなく、5年間の追踪調査において認知機能評価を行った348例の高齢者（平均年齢：71.7±6.3歳）を本試験に組み入れた。試験期間中のMCIまたは認知症の発症に基づいて試験開始時の心血管リスク因子を比較した。

結果：試験開始時の評価では、認知機能が正常な被験者は278例、MCIであった被験者は70例であった。試験期間中に認知機能に変化がない、または認知機能が改善したと診断された被験者数は292例（非進行群）であったが、56例の被験者は認知障害がMCIまたは認知症に進行した（進行群）。進行群の方が非進行群よりも高血圧症の有病率が高く、CIMTが大きかった。その他の試験開始時の心血管リスク因子には、性別、体格指数（BMI）、糖尿病、インスリン抵抗性、総コレステロール、ウエスト/ヒップ比、内臓脂肪、脈波伝播速度、および眼動脈脈圧比があるが、いずれも有意差を認められなかった。

試験開始時のCIMTの大きさと認知障害の進行の関連性は、試験開始時の発症の認知障害の心血管因子で調整後も維持された。試験開始時のCIMTの大きさは、試験開始時の認知機能が正常な被験者のMCI発症とともに独立して関連していた。

結論：試験開始時のCIMTの大きさは、MCIや認知症など高齢者の認知障害のリスクと独立して関連していた。

Stroke 2015; 46: 1024-1030. DOI: 10.1161/STROKEAHA.114.008170.

表2 認知障害の進行を伴う認知脳障害の危険因子のロジスティック回帰分析

<table>
<thead>
<tr>
<th>認知障害の進行を伴う認知脳障害の危険因子</th>
<th>モデル1</th>
<th>モデル2</th>
<th>モデル3</th>
</tr>
</thead>
<tbody>
<tr>
<td>年齢</td>
<td>1.038</td>
<td>1.043</td>
<td>1.045</td>
</tr>
<tr>
<td>学歴</td>
<td>0.942</td>
<td>0.969</td>
<td>0.973</td>
</tr>
<tr>
<td>高血圧</td>
<td>1.221</td>
<td>1.218</td>
<td>1.671</td>
</tr>
<tr>
<td>高血圧症者</td>
<td>1.872</td>
<td>1.765</td>
<td>2.115</td>
</tr>
<tr>
<td>試験開始時のCIMT</td>
<td>1.240</td>
<td>1.249</td>
<td>1.251</td>
</tr>
<tr>
<td>試験開始時のMMSE</td>
<td>0.976</td>
<td>0.959</td>
<td>0.998</td>
</tr>
<tr>
<td>試験開始時のGDS-K</td>
<td>1.034</td>
<td>1.037</td>
<td>1.037</td>
</tr>
<tr>
<td>試験開始時のCIRS</td>
<td>0.991</td>
<td>0.991</td>
<td>0.991</td>
</tr>
</tbody>
</table>

いずれの統計モデルにおいても認知障害の進行が従属変数であった。試験開始時の評価における認知障害の危険因子を独立変数とした。年齢、学歴、高血圧、およびCIMTを全統計モデルの独立変数とした。モデル2および3では試験開始時のMMSEおよびGDS-Kを独立変数とした。モデル3では試験開始時のCIRSを独立変数とした。CI：信頼度1%，CIMT：頸動脈内膜中膜肥厚，CIRS：認知症のリスク評価尺度，GDS-K：高齢者用くわしい認知症，HR：ハザード比，MMSE：ミニメモリースクリーニングテスト。

* P < 0.10
† P < 0.05
Толщина слоя интима-медиа сонной артерии отражает прогрессирование когнитивных нарушений у пожилых лиц

Departments of Internal Medicine and Neuropsychiatry, Seoul National University Bundang Hospital, and Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea; and Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, Korea

Предпосылки и цель исследования. Мы изучили связь между факторами риска развития сердечно-сосудистых заболеваний, в т.ч. толщиной слоя интима-медиа в сонной артерии (ТИМ) и риском развития умеренных когнитивных нарушений (УКН) и деменции у пожилых лиц. Методы. Провели проспективное популяционное исследование в рамках исследования Korean Longitudinal Study on Health and Aging. В настоящее исследование включили 348 участников без деменции на момент зачисления (средний возраст = 71.6 ± 6.3 года), у которых в течение 5 лет оценивали когнитивные функции. Наличие факторов риска развития сердечно-сосудистых заболеваний сравнивали с развитием УКН или деменции в течение периода исследования. Результаты. Согласно результатам первоначального обследования, у 278 лиц не было когнитивных нарушений и у 70 лиц были УКН. В течение периода наблюдения отметили отсутствие изменений или улучшения когнитивных функций у 292 пациентов (группа без прогрессирования), в то время как у 56 пациентов наблюдалось прогрессирование когнитивных нарушений (УКН или деменция (группа с прогрессированием)). В группе с прогрессированием выявили более высокую распространенность артериальной гипертензии и большую ТИМ по сравнению с группой без прогрессирования. Существенных различий по другим исходным сердечно-сосудистым факторам риска, включая пол, индекс массы тела, наличие сахарного диabetes, инсульт, липорезистентность, содержание общего холестерина, соотношение окружностей талии и бедер, объем висцерального жира, скорость распространения пульсовой волны и лодыжечно-плечевой индекс, между 2 группами не было. Связь между исходной больной ТИМ и прогрессированием когнитивных нарушений сохранялась после внесения поправки на традиционные исходные факторы риска развития когнитивных нарушений. Была исходная ТИМ также была независимо ассоциирована с развитием УКН у лиц с исходным отсутствием когнитивных нарушений. Выводы. Была исходная ТИМ была независимо ассоциирована с риском развития когнитивных нарушений, таких как УКН и деменция у пожилых пациентов.

Ключевые слова: атеросклероз (atherosclerosis), толщина комплекса интима-медиа сонной артерии (carotid intima-media thickness), деменция (dementia), легкие когнитивные нарушения (mild cognitive impairment).

Распространенность и заболеваемость когнитивными нарушениями, такими как деменция, быстро увеличивается с возрастом, что приводит к огромным социально-экономическим проблемам [1]. Согласно оценкам, частота болезни Альцгеймера в мире составляет >35 млн случаев, и в 2010 г. общие расходы на лечение деменции составили $604 млрд [2]. Кроме того, умеренные когнитивные нарушения (УКН), представляющие риск прогрессирования деменции, но являющиеся критерием для диагностики деменции, в пожилом возрасте встречаются достаточно часто; у 15–42% лиц в возрасте >65 лет есть УКН, а у ~5–15% из них ежегодно развивается деменция [3, 4]. В этом контексте выявление модифицируемых факторов риска развития деменции или УКН имеет большое значение. Согласно последним данным, наличие субклинического атеросклероза является предиктором развития когнитивных нарушений [5-7] и прогрессирования деменции [8].

Увеличение толщины слоя интима-медиа в сонной артерии (ТИМ), по данным УЗИ, является суррогатным маркером атеросклероза и четким предиктором развития сосудистых событий в будущем [9]. Этот неинвазивный и легко оцениваемый маркер ассоциирован с развитием когнитивных нарушений [10–14]. Однако клиническое значение этой ассоциации ограничено, поскольку в ранее проведенных исследованиях когнитивную дисфункцию выявили с использованием результатов специфических психоневрологических тестов, а не с помощью диагностики нозологических единиц, в т.ч. УКН и деменции. Кроме того, продолжаются споры относительно того, какие факторы риска развития сердечно-сосудистых заболеваний (ССЗ) являются более надежными предикторами появления когнитивных нарушений, а в последнее время появились данные о том, что снижение скорости пульсовой волны (СПВ) также ассоциировано с развитием когнитивной дисфункции [15]. В связи с этим в настоящем исследовании изучили связь между факторами риска развития ССЗ, в т.ч. ТИМ и другими суррогатными маркераами, и риском развития клинических УКН или деменции, особенно в популяции пожилых лиц, для которой характерна высокая распространенность ССЗ и когнитивных нарушений.
В этом исследовании мы изучали связь между факторами риска развития ССЗ и риском развития УКН и деменции в течение 5-летнего периода наблюдения пожилых пациентов, принимавших участие в популяционном когортном исследовании Korean Longitudinal Study on Health and Aging (KLoSHA).

МЕТОДЫ

Пациенты

Работа была проведена в рамках исследования KLoSHA, разработанного как популяционное проспективное когортное исследование состояния здоровья, старения и распространенности гериатрических заболеваний у пожилых корейцев в возрасте >65 лет [16]. Первоначально в исследование включили 1000 участников, которым провели исходное обследование в период с сентября 2005 по сентябрь 2006 г. Среди этих участников 503 человека не принимали участие в проведении повторного обследования (200 лиц скончались в течение периода наблюдения, 197 человек отказались от проведения повторного обследования, 69 лиц изменили место проживания, и с 37 лицами была утеряна связь). Повторное обследование после окончания 5-летнего периода наблюдения проводили с сентября 2010 по сентябрь 2011 г., и оценить когнитивные функции удалось у 448 пациентов. Среди них данные об исходном наличии факторов риска развития ССЗ и суррогатных маркеров были доступны для 353 пациентов. Исключили 5 человек с исходно диагностированной деменцией, поскольку целью исследования заключалась в изучении прогрессирования когнитивной дисфункции до наступления деменции. Наконец, в общей сложности 348 лиц были включены в исследование (средний возраст 71,7±6,3 года; соотношение мужчин и женщин 177:171). Проведение настоящего исследования было одобрено комитетом по этике университета в Сеуле. Пациенты были полностью информированы относительно участия в исследовании, и сами пациенты или их законные опекуны дали письменное информированное согласие.

Диагностика когнитивных нарушений и оценка уровня образования, настроения и общего состояния здоровья

Для диагностики УКН, деменции и других психических расстройств использовали корейскую версию батареи тестов Consortium to Establish a Registry for Alzheimer’s Disease Clinical Assessment Battery [17] и корейскую версию Mini International Neuropsychiatric Interview [18]. Кроме того, применяли корейскую версию Consortium to Establish a Registry for Alzheimer’s Disease Clinical Assessment Battery Neuropsychological Assessment Battery [19], тест на беглость речи [20] и тест на запоминание цифр [21] как было описано ранее [22]. Диагноз УКН выставляли на основании пересмотренных диагностических критериев для УКН, предложенных Международной рабочей группой по УКН, используя нейropsychологические тесты, описанные ранее [22]. Деменцию регистрировали по диагностическим критериям, указанным в четвертом издании Руководства по диагностике и статистике психических расстройств [23]. Уровень образования определяли с помощью анкет, в которой пациенты отмечали продолжительность обучения. Настроение оценивали с помощью корейской версии шкалы Geriatric Depression Scale (GDS-K) [24], а шкалу Cumulative Illness Rating Scale (CIRS) [25] использовали для оценки общего состояния здоровья у пожилых пациентов. Все описанные диагнозы психических расстройств и индексы шкал клинической деменции [26] определяли комиссией, состоящей из четырех психоневрологов, согласно критериям, упомянутым выше [22].

Исходные характеристики образа жизни

Статус курения разделили на 3 категории: курильщики, если пациенты курили на момент зачисления в исследование в течение >1 года; некурящие, если пациенты никогда не курили; бывшие курильщики, если пациенты курили ранее, но отказались от этой вредной привычки. Статус потребления алкоголя разделили на следующие категории: употребляющие алкоголь или не употребляющие его. К употребляющим алкоголь относили лиц, принимавших алкогольные напитки суммарно (в пересчете на спирт) >50 г в неделю.

Антропометрические и биохимические параметры

Рост, массу тела и окружность талии определяли с помощью стандартизованных методов. Индекс массы тела рассчитывали путем определения отношения массы тела и роста, возведенного в квадрат (в килограммах на квадратный метр). Уровень артериального давления (АД) определяли с помощью стандартного ртутного сфигмоманометра в положении сидя после 10 минут отдыха. Второе измерение проводили через >5 минут на руке с ранее зарегистрированными более высокими показателями. Уровень систолического и диастолического АД определяли по среднему значению 2 измерений.

Концентрацию глюкозы в плазме крови определяли натощак с использованием глюкозооксидазного метода, а концентрацию инсулина в плазме измеряли радиоиммунологическим методом (LINCO, Сент-Чарльз, штат Миссури). Гомеостатическую модель оценки резистентности к инсулину (HOMA-IR) рассчитывали с помощью метода, описанного ранее [27]. Содержание витамина B12 определяли с использованием электролюминесцентного иммуноферментного анализа (Roche 2170; Roche Ltd., Базель, Швейцария). Уровни общего холестерина, мочевины в плазме крови, креатинина, аспартатаминотрансферазы и аланинаминотрансферазы измеряли ферментативными методами с использованием автоматических анализаторов (Hitachi 747; Hitachi Ltd., Токио, Япония).

Ультразвуковое измерение ТИМ и оценка бляшек в сонной артерии

Для измерения ТИМ использовали ультразвуковые изображения в В-режиме, полученные с помощью УЗИ аппарата (Vivid FiVe; GE Ultrasound Europe,
Золинген, Германия) с линейным датчиком, рабо-
таяшим на частоте 10 МГц. Измерение проводили
на 1,0 см проксимальнее бифуркации сонной артерии
на дальней стенке сонных артерий с обеих сторон,
как было описано в предыдущих исследованиях [28].
ТИМ определяли как расстояние между поверхностю
слой медиа-адвенциона и поверхностью слоя просвет-
нигтима, а в данном исследовании использовали средне
значение точечных измерений в изучаемой области.
У каждого пациента ТИМ определяли как ее значение
всех измерений в левой и правой артерии. Бледные оценки
считали в соответствии с Мангеиским консенсусом [29],
согласно которому критерием наличия бледных явля-
ется утолщение стенки сосуда ≥1,5 мм или утолще-
ние стенки сосуда на ≥0,5 мм или более чем на 50%
по сравнению с близлежащими участками сосуда.

Скорость пульсовой волны
С СПВ определяли при измерении каротидно-бедрен-
ного индекса СПВ с использованием VR-2000 блока для
измерения пульсовой волны (Nippon Colin Ltd, Komaki,
Япония). Каротидно-бедренный индекс СПВ рассчи-
tали путем измерения времени задержки между одно-
временно запущенными пульсовыми волнами в сонных
и бедренных артериях и выразили в метрах в секунду.

Лодыжечно-плечевой индекс
После отдыха в течение 5 минут в положении лежа
на спине пациентам проводили измерение уровня
sistолического АД на обеих руках. Для измерения
sistолического АД в задней большеберцовой артерии
и дорсальной артерии стопы на обеих конечностях
использовали ультразвуковой постоянно-волновой
допплеровский зонд.

Диагностика артериальной гипертензии и сахарного
диабета
АД ниже 120/80 мм рт.ст. по результатам 2 последо-
вателевых измерений считали нормальным; критерием
норма состояния предгипертензии было АД от 120/80
dо 139/89 мм рт. ст., а критерием норма артериальной
гипертензии было повышение АД ≥140/90 мм рт.ст. или
указание на использование гипотензивных препаратов.
Критерия нормального углеводного обмена считали
сохранение глюкозы в крови натощак ниже 5,5 и ниже
7,77 ммоль/л через 2 ч после приема пищи; критерием
норма состояния преддиабета считали концентрацию глюкозы
в крови от 5,5 до 6,94 ммоль/л (натощак) или от 7,77
dо 11,05 ммоль/л (через 2 ч после приема пищи), а кри-
tерием наличия сахарного диабета — содержание глюкозы
≥6,99 (натощак) или ≥11,10 ммоль/л (через 2 ч после
приема пищи) или указание на применение противодиа-
бетических препаратов.

Статистический анализ
Значения с нормальным распределением приведе-
ны в виде «среднее значение±СО». Тест Стьюдента,
tест хi-квадрат или тест «линейо-линейной связи»
использовали для сравнения демографических и мета-
bолических показателей пациентов в группах без и
с прогрессированием когнитивных нарушений. Анализ
многофакторной логистической регрессии провели
для оценки множественных корреляций между развити-
ем УКН или деменции и другими факторами риска.
Провели анализ рабочей характеристической кривой
(РХК) для определения пороговых значений исходной
ТИМ для развития УКН или деменции. Также рассчи-
tали площадь под РХК и доверительный интервал (ДИ).
Весь статистический анализ выполняли с помощью
программного обеспечения SPSS (версия 18.0; SPSS,
Чикаго, Иллинойс). Различия при p<0,05 считали ста-
tистически значимыми.

■ РЕЗУЛЬТАТЫ
Изменения когнитивных функций в течение
5-летнего периода наблюдения
По результатам исходного обследования у 278 лиц
когнитивные нарушения отсутствовали, а у 70 паци-
ентов были УКН. По окончании 5-летнего периода
наблюдения у 261 пациента не было когнитивной
dисфункции, у 81 человека диагностировались УКН,
и у 6 лиц — деменция. За период исследования отме-
tили отсутствие изменений или улучшение когнитив-
ных функций у 292 лиц (группа без прогрессирования),
в то время как у 56 пациентов выявили прогрессирование
когнитивных нарушений (группа с прогрессированием)
для уровней УКН (n=50) или деменции (n=6). Среди
278 лиц с исходным отсутствием когнитивной дис-
функции по окончании 5-летнего периода исследова-
ния у 225 пациентов не выявили нарушений, у 50 паци-
ентов развилась УКН и у 3 пациентов — деменция.

Исходные параметры в соответствии
с прогрессированием когнитивной дисфункции
Мы сравнили исходные параметры, в т.ч. факторы
риска развития ССЗ, между группами без прогресси-
рования и с прогрессированием когнитивной недо-
статочности (таблица 1). Для группы с прогрессиро-
ванием были характерны более пожилой возраст
и более низкий уровень образования. Для этой группы
также была характерна более высокая распространен-
ность артериальной гипертензии, ТИМ была боль-
ше, чем в группе без прогрессирования (0,81±0,11
по сравнению с 0,77±0,13 мм рт.ст.; p=0,023).
Формирование бляшек в сонной артерии также наблюдалось чаще
в группе с прогрессированием (78,6% vs 63,7%; p=0,020).
Существенных различий в других исходных параметрах,
включая пол, индекс массы тела, наличие сахар-
ного диабета, оценку HOMA-IR, общее содержание
холестерина, мочевины, уровня аспартаттрансферазы,
аланинотрансферазы, витамина B12
и окружности талии, между двумя
группами не было. Исходные СПВ и ЛПИ, как прави-
ло, свидетельствовали в пользу более благоприятных
исходов в группе без прогрессирования, а в группе
с прогрессированием выявили более низкую исходную
оценку по шкале MMSE и высокую исходную
оценку по шкале GDS-K, свидетельствующие о более
выраженном нарушении когнитивных функций и
Связь между исходной ТИМ, формированием бляшек в сонной артерии и прогрессированием когнитивной дисфункции

Мы провели анализ многофакторной логистической регрессии для изучения независимой ассоциации между исходной ТИМ, наличием бляшек в сонной артерии и прогрессированием когнитивных нарушений после внесения поправок на другие факторы риска развития когнитивных нарушений (таблицы 2 и 3). К независимым переменным во всех статистических моделях относились возраст, уровень образования и наличие артериальной гипертонии, потому что возраст и уровень образования являются сильными факторами, влияющими на когнитивные функции. Было выявлено различие в распространенности артериальной гипертонии между группами с прогрессированием и без прогрессирования. Исходные нейрокогнитивные параметры, в т.ч. оценки по шкалам MMSE и GDS-K, добавили в качестве независимых переменных в модель регрессии, что позволило провести детальный анализ влияния на исходную оценку параметров когнитивного дефицита, а также на группы гипертонии между ними.

| Таблица 1. Исходные параметры выборки, в зависимости от наличия или отсутствия когнитивной дисфункции на конец периода наблюдения |
|-----------------|-----------------|-----------------|
| Параметры | Отсутствие прогрессирования (n=292) | Прогрессирование когнитивных нарушений (n=56) | Значение p |
| Возраст, годы | 71,5±5,9 | 74,0±7,8 | 0,027* |
| Пол (М/Ж) | 147/145 | 30/26 | 0,658 |
| Образование, число лет | 9,4±5,4 | 7,5±5,4 | 0,022* |
| ИМТ, кг/м² | 24,3±2,9 | 24,2±3,7 | 0,806 |
| Курение, п (%): | 0,809 |
| нет / в прошлом/курение | 170/91/31 (58,2/31,2/10,6) | 34/16/6 (60,7/28,6/10,7) | 0,780 |
| Употребление алкоголя, п (%): | 0,799 |
| нет / употребление | 202/90 (69,2/30,8) | 37/18 (67,3/32,7) | 0,421* |
| Инсулинорезистентность | 0,669 |
| Иксулу в анамнезе, п (%): | 69/33/190 (23,6/11,3/65,1) | 7/5/44 (12,5/8,9/78,6) | 0,021* |
| Артериальная гипертония, п (%): | 6/34/18/6 (18,6/6,0/13,3/65,1) | 7/54/44 (16,2/9,8/78,6) | 0,021* |
| Сахарный диабет, п (%): | 46/131/211 (15,8/46,2/38,0) | 11/24/21 (19,6/42,9/37,5) | 0,021* |
| Оценка по HOMA-IR | 1,49±0,71 | 1,28±0,78 | 0,151* |
| Общий холестерин, мг/дл | 201,7±35,7 | 206,0±45,8 | 0,433* |
| HDL, мг/дл | 16,2±14,7 | 16,7±14,8 | 0,502* |
| Креатинин, мг/дл | 1,11±0,23 | 1,10±0,19 | 0,663* |
| АСТ, мг/дл | 26,1±14,7 | 24,7±10,8 | 0,243* |
| ALT, мг/дл | 24,3±13,9 | 21,9±12,5 | 0,243* |
| Витамин B₁₂, пг/мл | 660,0±317,3 | 629,6±292,5 | 0,021* |
| Окружность талии, см | 86,2±9,2 | 86,3±8,7 | 0,951* |
| ТИМ, мм | 0,77±0,13 | 0,81±0,11 | 0,023* |
| Бляшки в сонной артерии, п (%): | 0,020* |
| нет / нет | 186/106 (63,7/36,3) | 44/12 (76,8/21,4) | 0,021* |
| СПВ, м/c | 8,8±1,6 | 8,2±1,6 | 0,071* |
| ЛПИ | 0,94±0,11 | 0,91±0,11 | 0,059* |
| Оценка по MMSE | 25,5±3,1 | 24,8±2,9 | 0,077* |
| Оценка по GDS-K | 9,2±6,7 | 11,2±7,0 | 0,042* |
| Оценка по CIRS | 3,9±2,5 | 4,1±2,4 | 0,546* |

Примечание. Данные указаны в виде среднезначений±СО. ЛПИ — подъязычно-печеночная индекс; ALT — аланинаминотрансфераза; AST — аспартатаминотрансфераза; ИМТ — индекс массы тела; ОМ — концентрация мочевины; ТИМ — толщина слоя интима-медиа в сонной артерии; CIRS — шкала Cumulative Illness Rating System; GDS-K — корейская версия гериатрической шкалы депрессии (Geriatric Depression Scale); HOMA-IR — гомеостатическая модель оценки инсулинорезистентности; MMSE — тест Mini-Mental State Examination; СПВ — скорость пульсовой волны. * — ρ<0,05 по данным t-теста Стьюдента, † — ρ<0,05, ‡ — по данным критерия хи-квадрат, § — по данным т-теста Стьюдента, † — ρ<0,05, ‡ — по данным критерия хи-квадрат, § — по данным т-теста линейной зависимости.
ных в модель 2, поскольку эти переменные являются известными факторами, отражающими риск развития когнитивной дисфункции и в исследовании выявили различие по этим оценкам между группами с прогрессированием и без прогрессирования. Исходную оценку по шкале CIRS, которая также является известным фактором, отражающим риск развития когнитивной дисфункции, ввели в качестве независимой переменной в модель 3. После внесения поправок на другие факторы риска, такие как возраст, уровень образования, наличие артериальной гипертензии, оценки по шкалам MMSE, GDS-K и CIRS, выявили независимую ассоциацию между исходной ТИМ и развитием УКН или деменции во всех статистических моделях (таблица 2). Независимой связи между исходным формированием бляшек в сонной артерии и прогрессированием когнитивных нарушений не было (таблица 3).

Оптимальные пороговые значения исходной ТИМ для прогнозирования прогрессирования когнитивных нарушений

Оценили оптимальные пороговые значения исходной ТИМ для прогнозирования развития когнитивной дисфункции с использованием анализа РХК. Пороговое значение исходной ТИМ для прогнозирования развития когнитивной дисфункции составляло 0,825 мм (площадь под РХК 0,614; чувствительность 50,0%; специфичность 71,2%). Прогрессирование до УКН или деменции в течение 5-летнего периода наблюдения отметили у 11,9% из 236 лиц с исходной ТИМ<0,825 мм и у 25,0% из 112 лиц с исходной ТИМ>0,825 мм.

Таблица 2. Логистический регрессионный анализ факторов риска развития когнитивной дисфункции в группе с прогрессированием когнитивной дисфункции

<table>
<thead>
<tr>
<th>Фактор риска</th>
<th>Модель 1</th>
<th>Модель 2</th>
<th>Модель 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OP</td>
<td>95% ДИ для OP</td>
<td>Значение p</td>
</tr>
<tr>
<td>Возраст</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Уровень образования</td>
<td>1,038</td>
<td>0,995–1,082</td>
<td>0,085*</td>
</tr>
<tr>
<td>Артериальная гипертензия</td>
<td>0,842</td>
<td>0,800–0,897</td>
<td>0,040t</td>
</tr>
<tr>
<td>Прегипертензия vs норма</td>
<td>1,221</td>
<td>0,346–4,302</td>
<td>0,756</td>
</tr>
<tr>
<td>Гипертензия vs норма</td>
<td>1,878</td>
<td>0,793–4,446</td>
<td>0,152</td>
</tr>
<tr>
<td>Исходная ТИМ</td>
<td>1,240</td>
<td>1,002–1,535</td>
<td>0,048t</td>
</tr>
<tr>
<td>Исходная оценка по MMSE</td>
<td>0,946</td>
<td>0,873–1,092</td>
<td>0,673</td>
</tr>
<tr>
<td>Исходная оценка по GDS-K</td>
<td>1,034</td>
<td>0,987–1,082</td>
<td>0,157</td>
</tr>
<tr>
<td>Исходная оценка по CIRS</td>
<td>0,991</td>
<td>0,872–1,125</td>
<td></td>
</tr>
</tbody>
</table>

Примечание. Зависимой переменной было прогрессирование когнитивной дисфункции во всех статистических моделях. Факторы риска когнитивной дисфункции при первоначальном обследовании вводили в качестве независимых переменных. Возраст, уровень образования, наличие артериальной гипертензии и ТИМ включали в качестве независимых переменных во все статистические модели. Исходные оценки по MMSE и GDS-K включали в качестве независимых переменных в модели 2 и 3. Исходную оценку по CIRS включали в качестве независимой переменной в модель 3. ДИ — доверительный интервал, ТИМ — толщина слоя интима-медиа в сонной артерии, CIRS — шкала Cumulative Illness Rating System; GDS-K — корейская версия геронтологической шкалы депрессии (Geriatric Depression Scale); MMSE — тест Mini-Mental State Examination. * — p<0,10; † — p<0,05.

Таблица 3. Анализ логистической регрессионной модели прогрессирования когнитивной дисфункции по факторам риска

<table>
<thead>
<tr>
<th>Фактор риска</th>
<th>Модель 1</th>
<th>Модель 2</th>
<th>Модель 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OP</td>
<td>95% ДИ для OP</td>
<td>Значение p</td>
</tr>
<tr>
<td>Возраст</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Уровень образования</td>
<td>1,039</td>
<td>0,996–1,084</td>
<td>0,075*</td>
</tr>
<tr>
<td>Артериальная гипертензия</td>
<td>0,946</td>
<td>0,894–1,000</td>
<td>0,050*</td>
</tr>
<tr>
<td>Прегипертензия vs норма</td>
<td>1,204</td>
<td>0,343–4,222</td>
<td>0,772</td>
</tr>
<tr>
<td>Гипертензия vs норма</td>
<td>1,824</td>
<td>0,767–4,335</td>
<td>0,174</td>
</tr>
<tr>
<td>Исходное наличие бляшек в сонной артерии</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Давление</td>
<td>1,871</td>
<td>0,926–3,780</td>
<td>0,081*</td>
</tr>
<tr>
<td>Исходная оценка по MMSE</td>
<td>0,976</td>
<td>0,872–1,092</td>
<td>0,666</td>
</tr>
<tr>
<td>Исходная оценка по GDS-K</td>
<td>1,029</td>
<td>0,983–1,078</td>
<td>0,223</td>
</tr>
<tr>
<td>Исходная оценка по CIRS</td>
<td>0,994</td>
<td>0,871–1,127</td>
<td>0,924</td>
</tr>
</tbody>
</table>

Примечание. Зависимой переменной было прогрессирование когнитивной дисфункции во всех статистических моделях. Факторы риска развития когнитивной дисфункции при первоначальном обследовании вводили в качестве независимых переменных. Возраст, уровень образования, наличие артериальной гипертензии и ТИМ включали в качестве независимых переменных во все статистические модели. Исходные оценки по MMSE и GDS-K включали в качестве независимых переменных в модели 2 и 3. Исходную оценку по CIRS включали в качестве независимой переменной в модель 3. ДИ — доверительный интервал; CIRS — шкала Cumulative Illness Rating System; GDS-K — корейская версия геронтологической шкалы депрессии (Geriatric Depression Scale); MMSE — тест Mini-Mental State Examination. * — p<0,10; † — p<0,05.
Связь между исходной ТИМ, наличием атеросклеротических бляшек в сонной артерии и развитием УКН у лиц без когнитивной дисфункции

Мы также изучили связь между исходной ТИМ и развитием УКН у 275 лиц с исходным отсутствием когнитивной дисфункции и без диагноза деменции при проведении повторного обследования. ТИМ также была большой у лиц без исходной когнитивной дисфункции, но с развитымиыми УКН по сравнению с пациентами без когнитивных нарушений по итогам повторного обследования (0,82±0,11 vs 0,77±0,14 мм, p=0,021; см. таблицу I в дополнительных данных on-line). Бляшки в сонной артерии также чаще встречались у пациентов с УКН без исходной когнитивной дисфункции по сравнению с пациентами без когнитивных нарушений (80,0% vs 63,6%; p=0,026; см. таблицу I в дополнительных данных on-line). Выявили наличие независимой связи между исходной ТИМ и развитием УКН у лиц с исходным отсутствием когнитивной дисфункции после внесения поправок на возраст, уровень образования, наличие артериальной гипертензии, оценку по шкалам MMSE, GDS-K и CIRS (таблица II в дополнительных данных on-line). Исходное наличие бляшек в сонной артерии также имело тенденцию к ассоциированию с развитием УКН после внесения поправок на те же факторы (таблица III в дополнительных данных on-line).

Пороговое значение исходной ТИМ для прогнозирования развития УКН при исходном отсутствии когнитивной дисфункции составило 0,805 мм (площадь под РХК 0,627; чувствительность 56,0%; специфичность 67,1%). Через 5 лет УКН развивались у 12,7% из 173 здоровых лиц с исходной ТИМ < 0,805 мм и у 27,5% из 102 здоровых лиц с исходной ТИМ ≥ 0,805 мм.

■ ОБСУЖДЕНИЕ

В проведенном проспективном исследовании мы продемонстрировали, что большая исходная ТИМ и исходное наличие бляшек в сонной артерии были ассоциированы с развитием когнитивной дисфункции, а увеличение ТИМ, в частности было независимым фактором риска прогрессирования когнитивных нарушений у пожилых людей. Результаты последних крупных проспективных когортных исследований показали, что наличие факторов риска развития ССЗ, в т.ч. 10-летняя оценка риска развития CCЗ, ассоциированы с появлением когнитивной дисфункции [6, 7, 30–33]. Кроме того, в ранее проведенных проспективных исследованиях подтвердили, что большая ТИМ является фактором риска развития когнитивных нарушений в общей популяции [11, 12, 14], у пожилых людей [10] и у пациентов с болезнью Альцгеймера [13, 34]. Однако в настоящем исследовании мы оценили риск развития когнитивной дисфункции с исходом в УКН или деменцию с использованием общепринятых диагностических критериев, а не специфических тестов для выявления когнитивных нарушений. Таким образом, в проведенном исследовании не только подтвердили наличие ассоциации между большой ТИМ и когнитивной дисфункцией, но и клиническую значимость этой ассоциации. Кроме того, мы провели комплексную оценку наличия субклинического атеросклероза, например начальных признаков формирования атеросклеротических бляшек в сонной артерии, СПВ и ЛПИ, а также различных факторов риска развития ССЗ, в т.ч. индекса массы тела, артериальной гипертензии, сахарного диабета, НОМА-ИР и уровня холестерина. Среди этих факторов ТИМ имела превосходство в прогнозировании клинически значимого нарушения когнитивных функций, чем другие суррогатные маркеры субклинического атеросклероза и факторы риска развития сердечно-сосудистых заболеваний.

До сих пор неизвестно, влияет ли изменение сосудистой стенки, например увеличение ТИМ, на развитие когнитивной дисфункции у пожилых лиц или просто является ранней сосудистой реакцией, сопряженной с детерминацией нейронов. Кроме того, в нашем обзорном исследовании мы не смогли исключить обратную причинно-следственную связь. Последние исследования свидетельствуют о том, что сосудистая дисфункция участвует в патогенезе не только сосудистой деменции, но и болезни Альцгеймера [35]. Сосудистая дисфункция связана с наличием атеросклеротических поражений и приводит к снижению поступления кислорода и глюкозы в головной мозг [35, 36]. Повышение содержания β амилоид (Аβ), являющегося патогенным пептидом при болезни Альцгеймера, также влияет на изменение сосудов и усугубляет ограничение поступления крови в головной мозг [37], а сосудистая дисфункция может привести к снижению клиренса Аβ через гематоэнцефалический барьер [35]. В этом контексте было отмечено, что сосудистая дисфункция и отложение Аβ оказывают синергическое влияние на дегенерацию нейронов [35]. Оксидантный стресс также является общим патологическим механизмом при сосудистой дисфункции и болезни Альцгеймера. Оксидантный стресс, который может вызвать повреждение сосудов, напрямую связан с отложением Аβ в головном мозге [35]. На основе этих понятий можно предположить, что определение ТИМ является важным методом прогнозирования развития когнитивных нарушений, в т.ч. УКН и деменции, несмотря на вероятность обратной причинно-следственной связи.

Настоящее исследование продемонстрировало некоторые важные аспекты для клинической практики. Полученные результаты показывают, что у пожилых лиц с большой ТИМ выше риск прогрессирования когнитивных нарушений вплоть до УКН или деменции; в связи с этим среди этих людей нужно проводить более интенсивный мониторинг для раннего выявления когнитивных нарушений. Несмотря на то что диагностическая мощность этого метода обследования ограничена, пороговое значение исходной ТИМ для прогнозирования прогрессирования когнитивных нарушений составило 0,825 мм (0,805 мм для развития УКН), и это значение было сходно с пороговыми значениями ТИМ для прогнозирования развития инсульта и ССЗ по данным ранее проведенных исследований [38]. Отношение рисков для прогрессирования когнитивных
нарушений при увеличении ТИМ на 0,1 мм составило около 1,25 (1,33 для развития УКН), и это было выше, чем известные отношения рисков для развития инсульта (1,09–1,17) и инфаркта миокарда (1,07–1,16) [9]. Кроме того, очевидно, что ТИМ не была ассоциирована с риском развития деменции у лиц с УКН в этом исследовании (данные не представлены), но была выявлена связь с риском развития УКН у лиц пожилого возраста без когнитивной дисфункции. Эти результаты показывают, что определение ТИМ может быть полезным методом диагностики только для прогнозирования развития ранней стадии когнитивных нарушений и не позволяет прогнозировать развитие выраженных когнитивных нарушений у пожилых людей; таким образом, оправдано проведение дальнейших исследований, потому что число случаев развития деменции в настоящем исследовании было небольшим (n=6), а статистическая мощность — недостаточной.

Одним из потенциальных ограничений настоящего исследования было включение в анализ данных лиц с перенесенным инсультом. После исключения данных 31 пациента с перенесенным инсультом выявили, что ТИМ была больше в группе с прогрессированием по сравнению с группой без прогрессирования (0,81±0,11 vs 0,77±0,14 мм, p=0,072), а анализ логистической регрессии также показал наличие ассоциации с прогрессированием когнитивных нарушений после внесения поправок на другие факторы риска развития ССЗ (ОР = 1,28, p=0,066). Таким образом, вполне возможно, что инсульт в анамнезе был вмешивающим фактором в ассоциацию ТИМ и когнитивными нарушениями. Однако различий в распространенности инсульта в анамнезе у лиц обеих групп не было и ТИМ была независимо связана с прогрессированием когнитивной дисфункции при введении в логистическую регрессионную модель такого фактора, как наличие инсульта в анамнезе в качестве независимой переменной вместо артериальной гипертензии (ОР = 1,255, p=0,042). Другим ограничением исследования была низкая доля пациентов, оставшихся под наблюдением из нашей выборки пожилых лиц, что может быть причиной систематической ошибки отбора. Тем не менее по результатам сравнения исходных характеристик между включенными и исключенными лицами в данном исследовании (данные не представлены) исключенные пациенты были старше, это чаще были женщины, лица с низким уровнем образования, более низким индексом массы тела, инсультом в анамнезе, низкой оценкой по шкале MMSE (исходное нарушение когнитивных функций) и высокой оценкой по шкале GDS-K (более выраженная депрессия). ТИМ также была больше у исключенных из исследования пациентов. В целом у исключенных из исследования лиц был выше риск развития когнитивной дисфункции и больше ТИМ. Таким образом, если бы данные исключенных из исследования пациентов включили в анализ, то произошло бы усиление наблюдаемой корреляции между большой ТИМ и риском развития когнитивных нарушений.

Выводы

В исследовании показало, что большая исходная ТИМ была ассоциирована с прогрессированием когнитивных нарушений вплоть до развития УКН или деменции у пожилых лиц в течение 5-летнего периода наблюдения. Эта ассоциация сохранялась после внесения поправок на другие факторы риска развития когнитивных нарушений, в т.ч. возраст, уровень образования, наличие артериальной гипертензии, депрессии и других сопутствующих заболеваний. Эти результаты показывают, что пожилые пациенты с большой ТИМ требуют более интенсивного наблюдения с целью раннего выявления когнитивной дисфункции.

Литература

23

